报告时间:2022年04月21日(星期四)14:00-15:00
报告地点:腾讯会议:546875385
报 告 人:耿献国 教授
工作单位:郑州大学
举办单位:数学学院
报告简介: On the basis of the spectral analysis of the 4×4 Lax pair associated with the spin-1 Gross–Pitaevskii equation and the scattering matrix, the solution to the Cauchy problem of the spin-1 Gross–Pitaevskii equation is transformed into the solution to the corresponding Riemann–Hilbert problem. The Deift–Zhou nonlinear steepest descent method is extended to the Riemann–Hilbert problem, from which a model Riemann–Hilbert problem is established with the help of distinct factorizations of the jump matrix for the Riemann–Hilbert problem and a decomposition of the matrix-valued spectral function. Finally, the long-time asymptotics of the solution to the Cauchy problem of the spin-1 Gross–Pitaevskii equation is obtained.
报告人简介:耿献国,郑州大学数学与统计学院教授,博士生导师,郑州大学特聘教授。国务院政府特殊津贴专家,全国百篇优秀博士学位论文指导老师。从事的研究方向是可积系统及应用。曾在Commun. Math. Phys., Trans. Amer. Math. Soc., Adv. Math., J. Nonlinear Sci., SIAM J. Math. Anal.等刊物上发表论文。主持国家自然科学基金重点项目2项和多项国家自然科学基金面上项目等。