报告时间:2021年11月12日(星期五)15:00-17:00
报告地点:腾讯会议:820 573 391
报 告 人:储德林 教授
工作单位:新加坡国立大学
举办单位:数学学院
报告人简介:储德林,新加坡国立大学教授。1982年考入清华大学,获学士、硕士、博士学位。先后在香港大学,清华大学,德国TU Chemnitz(开姆尼斯工业大学)、University of Bielefeld(比勒费尔德大学)等高校工作过。主要研究领域是科学计算、数值代数及其应用,在SIAM系列杂志,Numerische Mathematik,Mathematics of Computation,IEEE, Trans.,Automatica等国际知名学术期刊发表论文一百余篇。任Automatica期刊的副主编,Journal of Computational and Applied Mathematics的顾问编委,Journal of The Franklin Institute期刊的客座编委。
报告简介:The largest separable ball is a meaningful geometric sufficient condition for separability of bipartite quantum states which yields that all the states in the unit ball in Frobenius norm centred at the identity matrix are separable. In this talk, we introduce
an algorithm that can improve the capability of this criterion to detect the separability outside the unit ball by solving an optimization problem based on the invertible local operators, that is, to optimize with respect to the invertible square matrices A and B. The numerical examples have shown that this algorithm is more powerful than the original separable ball criterion.