报告时间:2020年12月18日(星期五)13:30-14:30
报告地点:科教楼B座 1710
报 告 人:赵勤 讲师
工作单位:武汉理工大学
举办单位:数学学院
报告简介:
In this talk, we focus on the hypersonic limit of two-dimensional steady non-isentropic compressible Euler flows passing a straight wedge, in which the Mach number goes to infinity. A form of the Euler equations, which is valid if the unknowns are measures, is proposed, and a measure solution containing Dirac measures supported on the surface of the wedge is constructed. This justified the Newton theory of hypersonic flow passing obstacles in the case of two-dimensional straight wedges. The talk is based on joint works with Prof. Hairong Yuan, Prof. Aifang Qu.
报告人简介:
赵勤博士,武汉理工大学讲师。2016年毕业于复旦大学,获理学博士学位。随后于2016年至2019年,在上海交通大学从事博士后研究。主要从事非线性双曲守恒律和流动稳定性方面的相关研究工作。近五年,在Nonlinear Analysis,J. Math. Anal. Appl. ,Acta Mathematica Scientia等国际数学期刊上发表SCI论文10余篇。