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HRL-Based Access Control for Wireless
Communications With Energy Harvesting

Yingkai Wang, Qingshan Wang , Member, IEEE, Qi Wang , and Zhiwen Zheng

Abstract— This paper studies the access control problem of
long-term throughput maximization in wireless communication
systems with Energy Harvesting (EH). In the existing
research, many access schemes based on accurate environmental
information have been proposed, such as channel information and
the EH process. However, access to environmental information is
costly, and traditional access control frameworks are expensive
to explore in high-dimensional spaces. Thus, an access control
framework based on hierarchical reinforcement learning (HRL)
is proposed in this paper. In HRL, the control problem in
the Markov decision process (MDP) form is decomposed into
a multilevel sequential control problem. It includes high-level
channel number selection, mid-level channel selection, and low-
level channel matching subproblems. The scheme is obtained
by combining the solutions of subproblems at different level
which are solved in sequence. In addition, to improve learning
efficiency, the deterministic action (DA) module and the prior
knowledge (PK) module are put forward. The DA module solves
the channel matching problem under the additional guidance
given by the previous subproblem, which selects definite good
low-level actions. The PK module provides the framework with
the common knowledge of the system structure learned from
the hypothetical environment, so as to obtain better initial
performance. Experimental results show that our framework
achieves better performance and better learning efficiency
compared with several recent transmission schemes.

Note to Practitioners—Access control is an important issue in
wireless communication systems, and users need to be scheduled
to solve the constraint of limited resources, such as energy usually
provided by batteries. In recent years, in order to overcome the
energy limitation, energy harvesting devices have been developed
and applied to wireless communication systems. However, the
energy collection ability of the system is greatly influenced
by the environment, which leads to the poor performance
of most traditional control schemes that rely on the prior
knowledge of the environment. Therefore, this paper proposes
a novel hierarchical reinforcement learning (HRL)-based model-
free access control framework for wireless communication
system to maximize the system throughput without any prior
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environmental knowledge. The scheme abstracts the original
control problem into three sub-control sub control problems
according to tasks and solves them sequentially, thus simplifying
the original control problem. This scheme can not only learn
independently, but also does not depend on the prior knowledge
of the environment. Moreover, this method is also suitable
for the large-scale environment while the conventional end-to-
end reinforcement learning is not suitable for. Compared with
traditional algorithms, our method has better performance and
higher learning efficiency.

Index Terms— Neural network applications, decision-making,
knowledge based system, access control, energy harvesting.

I. INTRODUCTION

W ITH the increasing popularity of the Internet of
Things (IOT) in recent years [1], its application

scope is also expanding [2], [3]. However, due to the
limited battery capacity of IOT terminal equipment, the
progress of IOT terminal equipment has been hindered by
the shortage of energy [4]. Among various energy sources,
energy harvesting (EH) technology is a promising solution.
It collects environmental energy (such as solar energy, wind
energy and heat energy) and converts it into electric energy
for terminal equipment [5]. Theoretically, it provides endless
power, allowing the EH series communication system to be
free from the limitation of permanent wires position or limited
battery capacity for constant charging [6].

Despite the benefits listed above, EH communication
systems still face the challenge of operating in an uncertain
and dynamic environment [7]. Because the environment has
such a strong influence on the performance of EH, the energy
obtained in each cycle is usually expressed as a highly volatile
random value [8]. At the same time, the fast fading channel
(rapidly changing) makes the state space of communication
systems grow exponentially with the increase of system scale
[9]. The above factors make it difficult to design an appropriate
access control scheme.

Access control schemes have been the focus of intensive
study in wireless communication systems, and EH devices
need to schedule users to solve the constraint of limited
resources. There are two significant limitations. The first
limitation is that the conventional methods rely on environment
information (no-causal case). These methods lack the prior
knowledge of new environment that is difficult to obtain
or estimate. Thus, they are almost difficult to be applied
in practice. Even if the current environmental distribution
is estimated from historical data, it is inevitably different
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from the actual current environment and cannot adapt to the
dynamically changing environment. The second limitation is
the scalability of some RL methods, which are hard to be used
in large-scale environments because of low learning efficiency.
If the scale of the system is slightly larger, there will be
poor learning ability and low learning efficiency. It reduces
the generalization of the method and increases the actual cost
and computational cost in the face of environmental changes.

In this paper, we study a problem: given an energy
harvesting module to support power and sets of fading
channels and users, find the optimal transition policies such
that the sum of throughput is maximized over all slots
while satisfying the power constraint. In order to overcome
two major limitations mentioned above, we propose a novel
HRL-based model-free access control framework without
any prior environmental knowledge. For the first limitation,
we designed a layered architecture with three controllers.
In this architecture, EH devices do not decide the matching of
specific channels for each user separately. Instead, considering
the fast fading channels, it selects the number of matching
channels, the specific channels to participate in the matching,
and the specific channel user matching orderly. By making
simple decisions step by step, such as the number of
matching channels, the goal of the specific channel user
matching complex decisions is finally realized. In this way,
the structural knowledge of the system is used to supplement
the lack of environmental prior knowledge and avoid the
difficulty of making and realizing complex decision goals
based on sparse environmental prior knowledge. In addition,
the prior knowledge (PK) module into the framework to
improve the learning efficiency of samples and reduce the
device’s dependence on environmental information. For the
second limitation, we propose a deterministic action (DA)
module with low computational overhead as a low-level
channel user matching controller, and a neural network-
based DRL algorithm as a high-level and intermediate level
controller.

The main contributions are summarized as follows:
• We formulate the access control problem as a Markov

Decision Process (MDP) problem.
• We further design a novel HRL framework with three

levels for access control network in task abstraction form
(high-level channel number selection, mid-level channel
selection and low-level channel matching). By decoupling
the original optimization objectives into three levels, the
complex action space in our proposed HRL framework is
simplified.

• We integrate DA module and PK module into the
framework to make better use of some structural
features of the system shown by the decoupling method.
The DA module directly solves the problem of low-
level channel matching, instead of traditional inefficient
random exploration, that is, reducing the potential
exploration cost by finding the optimal action that meets
the constraints. The PK module improves the efficiency of
samples and avoids repeated learning of public knowledge
by acquiring common knowledge in the hypothetical
environment.

The rest of this paper is organized as follows: Section II
introduces the related work. Section III present our system
model and section IV formulates the maximization throughput
problem. Section V propose our HRL-based framework and
learning module in detail. Section VI presents performance
evaluation setup details and results. Finally, Section VII
concludes this paper and outlines future works.

II. RELATED WORK

In this section, we discuss two different types of existing
approaches for EH and some HRL works [10], [11].

A. Conventional Approaches Without RL

Most of the existing research is based on traditional
methods, such as heuristic, mixed integer linear programming
and dynamic programming. Authors often rely on unrealistic
prior knowledge. Specifically, there are two types: one type
is to assume that we already know the distribution of the
energy arrival model or the specific channel model, then use
the dynamic programming method or mixed integer linear
programming to find the optimal decision [12], [13]. Another
type is to assume that we already know environment prior
knowledge, that is, before transmitting, we can get the energy
harvesting and channel changes at the subsequent time, and
use heuristic method to allocate the power of each time slot
[9], [14], [15], [16], [17].

Although all the above methods are effective in the scenarios
they consider, each method is based on the strong environment
assumption, either directly or indirectly. As we mentioned
earlier, accurate environmental assumptions are extremely
difficult to obtain. Even if the current environment distribution
is derived from historical data, the obtained offline algorithm is
incapable of adapting to the constantly changing environment.
In contrast, our model-free HRL methods can work without
any prior knowledge.

B. RL Based Approaches

RL is a promising model-free algorithm for achieving a
given goal by learning directly from the environment in an
unknown environment [18]. The first RL work of designing
EH wireless communication transmission strategy based on
RL is [19], in which RL is applied to EH point-to-point
communications system, and its performance is better than
that of traditional offline methods. In both [20] and [21],
the EH point-to-point communication system is discussed,
and Q-learning algorithm is applied to learn a transmission
strategy which maximizes the amount of data arriving at
the destination. In [22], a well-designed Q-learning-based
architecture was designed to find the best Antenna selection
scheme and achieved ideal results. With the development of
technology, neural network (NN) has been applied in RL.
The first DRL work is [23], in which the DRL is used to
design energy allocation and multiple access control strategy
for a multi-access system that transmits data to multiple users
based on EH module access control access point. In [23],
[24] and [25], the DRL-based access scheme of EH multiple
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access system has achieved better results than traditional
algorithms without prior knowledge. In [26], a distributed
multi-agent DRL algorithm is proposed, which is based on
the same reward function for all nodes. In [27], the DRL
framework for online operation of multi-hop EH-WSNs is
proposed for the first time, and distributed and centralized
architectures are designed. According to the channel status
information, battery status and packet priority, the node adjusts
its selective transmission strategy. Especially, in [28], the
DRL-based optimal transmission strategy of single link EH-
WSN is proposed by using a monotone neural network.
However, these RL methods and frameworks can only be used
in some simple environments, and do not work well in the
high-dimensional search space.

C. Some HRL Works

To adapt to the situation of high-dimensional space,
a reinforcement learning extension framework-hierarchical
reinforcement learning (HRL) began to be studied, known for
some methods: HAM [29], Options [30] and MAXQ [31].
The key to HRL is an abstraction, by removing irrelevant
or redundant information or adding transcendental upper-level
guidance. There are some abstractions in HRL, including but
not limited to state space abstraction [32], task abstraction
[33], and time abstraction [34]. In [35], a proactive VNE
algorithm relying on HRL was proposed, which better than
stat-of-the-art VNE algorithms and better robustness when the
type of VNR changes. Moreover in many large-scale projects
[36], [37], [38], HRL shows far more better learning ability
than DRL. However, there is no universal abstraction method
that can obtain generally satisfactory results in all problems
which means that the abstract methods in each problem need
to be designed separately.

III. SYSTEM MODEL

The framework of the system is shown in Fig. 1. The system
provides communication service for K users (UE) through N
orthogonal channels (CH) by sending packets, running in the
form of time slots. Especially, this system only uses an EH
module to supply power, and carries a battery to store the
power collected by the EH module.

A. Channel Model

Considering the characteristic that orthogonal frequency
division multiplexing channel can only be assigned to one
user at one time, the overall channel state in each time slot
t is denoted as a N × K matrix cs[t] where the element
csi, j [t] stands for i orthogonal channel assigned to user j .
The channel state is fast fading which means that the channel
state changes rapidly between the unit duration and the CH
information in each time slot is uncertain. Therefore, csi, j [t] is
random, and the random distribution is strongly related to the
environment. Obviously, the shape of the channel state matrix
cs[t] is determined by the number of users K and the number
of orthogonal channels N contained in the system.

In the current wireless communication system, only a
few predefined discrete communication models are actually

Fig. 1. Framework of the system.

supported which corresponding to different channel coding
rates [39]. Let rap = {r1, r2, · · · , rm} (r1 < r2 < · · · < rm) to
represent the m kinds of discrete transmission rate and tri ∈
{tr1, tr2, . . . trm} to represents the corresponding minimum
received signal power to the transmission rates in rap. In order
to support the operation of the minimum transmission rate
rk(1 ≤ k ≤ m), the accepted power(attenuated fixed
transmitting power)is required to be at least greater than the
minimum decoding power trk but less than trk+1 (if k = m
then trk+1 = ∞ ), that is, the channel state csi, j [t] satisfies
trk ≤ p ∗ csi, j [t] but p ∗ csi, j [t] < trk+1, so as to obtain:

trk/p ≤ csi, j [t] < trk+1/p (1)

where p is the fixed system transmitting power. From Eq. 1,
it can be seen intuitively that the channel state ci, j [t]
can be measured by the minimum received signal power
trk(1 ≤ k ≤ m).

Furthermore, we use transmission rate to represent the
current channel state cs[t]. Therefore, all the channel states
csi, j [t] mentioned hereafter are referred to as the maximum
transmission rate can be sent through the j channel to the i
user.

B. Access Control

Similar to the representation method of channel state, the
access control action in time slot t is denoted as a N×K matrix
a[t] and the element ai, j [t] in a[t] satisfies ai, j [t] ∈ {0, 1},
where ai, j [t] = 0 indicates that channel i is not been assigned
to user j , and ai, j [t] = 1 indicates assigning.

Obviously, if channel state cs[t] and access control a[t]
are given, the total transmission rate r [t] can be obtained by
multiplying the access control action a[t] and the channel state
cs[t], i.e.:

r [t] = a[t] ◦ cs[t] =
N∑

i=1

K∑
j=1

ai, j [t] ∗ csi, j [t]

where ◦ means Hadamard Product (each element is the
product of corresponding position elements of the original two
matrices).
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C. Energy Harvesting Model And Battery Model

The EH module starts working at the same time as AP and
the energy collected by the EH module in time slot t is denoted
as e[t], which is regarded as a Poisson process with capacity
constraint, similar to many previous works [40], [41].

The battery has a limit of capacity bmax , and the amount of
energy stored in the battery is expressed as b[t]. The energy
consumption due to work in each time slot is denoted as p[t]
and can be directly obtained by

p[t] = (

N∑
i=1

K∑
j=1

ai, j [t])× p

where p is the fixed system transmitting power. In particular,
access control action cannot be executed when the energy
consumption p[t] of the action is greater than the current
energy b[t] of the battery.

Like many other works, the whole workflow involving
energy harvesting and energy consumption is considered as
a typical Markov decision process [42]. At the beginning of
time slot t , the workflow calculates the remaining energy b[t]
of the previous time slot. Following, at the end of the time slot
t , the workflow calculates the working energy p[t] and energy
e[t] collected. Then the energy b[t+1] at the beginning of the
next time slot can be definitely calculated by Markov decision
process:

b[t + 1] = min(bmax , b[t] + e[t] − p[t])
Specially, we discretize both energy of the battery b[t] and
harvesting energy e[t]. Assume that sending a data packet
consumes a unit power.

D. System Overview

For the considered system, the transmission strategy used
is binary transmission strategy, where there are only two
transport options available: full service and no service. The
total access control policy π makes access control decisions
a[t] based on the current channel state cs[t], EH module
performance e[t] and electric quantity b[t], which can be
expressed as:

π(cs[t], e[t], b[t]) −→ a[t]
Therefore, the workflow of the whole system can be

summarized as follows: firstly, at the beginning of t time slot
the system decides to allocate action a[t] based on the access
control policy π . Then according to the allocation action a[t]
and cs[t], the total transmission rate r [t] and the corresponding
energy consumption p[t] are calculated respectively. Finally,
according to the battery storage b[t] at the beginning of the
round, the energy e[t] collected in the current round and
the energy consumption p[t], the electric energy b[t + 1] in
the battery at time slot t + 1 is calculated. The whole cycle
goes to the next one.

IV. PROBLEM FORMULATION

In this section, the access control problem is formulated in
MDP form, and then the RL framework is adopt to solve it.

Fig. 2. MDP based reinforcement learning process.

A. Markov Decision Process

The MDP can be represented by a quad: state space S,
action space A, reward function R and transition function.
The problem we considered is a finite-horizon MDP with T
slots. The interaction process is shown in Fig. 2 and the four
parts are given below:

1) State space S: the element s[t] in state space S represents
the system state at time slot t , consisting of channel
state cs[t] and battery energy b[t]. Thus, the s[t] can be
written as:

s[t] ∈ S = {cs[t] ⊕ b[t]}.
2) Action space A: the action space is a set of all possible

access control action:
a[t] ∈ A

where ai, j [t] ∈ {0, 1} and ai, j [t] = 0 indicates that
the i channel is not assign to the j user, and ai, j [t] =
1 indicates assigning.

3) Reward function R: the reward function is defined as
the total transmission rate in a single time slot:

R(s[t], a[t]) = a[t] ◦ cs[t] =
N∑

i=1

K∑
j=1

ai, j [t] ∗ csi, j [t]

where ◦ means Hadamard Product. Obviously, higher
transmission rate mean higher throughput. Therefore, the
original problem is converted to get more reward in the
MDP.

4) Transition Function ts[t]: the transition function ts[t] :
S × A → S′ is defined as how the system sate s[t] in
current time changes if an action a[t] is adapted.

The communication system needs to determine the policy π :
S→ A, which maps each state to the corresponding action.

We aim to develop the optimal policies π� for the
communication system so as to maximize its expected sum-
throughput (the expected total reward Rsum under the MDP
model) overall T slots, subject to the channel using constraint
and the total power. The MDP problem is therefore formulated
as:

max
π

Rsum = E

[
T∑

t=1

R(s[t], a[t]))
]

s.t. p[t] < b[t], 1 ≤ t ≤ T

MDP is the optimal solution to the problem. Generally,
such an optimization problem certainly can be solved by

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on January 12,2023 at 00:21:21 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: HRL-BASED ACCESS CONTROL FOR WIRELESS COMMUNICATIONS WITH ENERGY HARVESTING 5

some traditional methods, such as value iteration [43] and
policy iteration [44]. However, these traditional methods
require the explicit transition model for optimization. But
in many environments, the transition model is unavailable
to the relaying system. For instance, the channel state of a
link at certain time or the energy of EH over a period of
time is both affected by many complex factors, which are
difficult, sometimes even impossible to be modeled. A simple
solution [43], [44] is to estimate the transition model by
sampling, but the performance of this method becomes very
sensitive to sampling quality and is difficult to achieve good
results in a dynamic environment. Therefore, we deploy deep
reinforcement learning (DRL) which requires neither explicit
transition function, i.e., prior knowledge of the environment.

B. Standard RL And DRL

(1) Standard RL: Q-learning is the representative algorithm
of standard reinforcement learning (RL). In Q-learning, agent
interacts with the environment directly and in every interaction
step t , the agent take an action a[t] to the state s[t] then obtain
the feedback, i.e., the reward r [t] and the state s[t] goes to
the next state s[t + 1]. Throughout the interaction, Q-learning
maintains a lookup table of the state-action values, i.e.,
Q-values Q(s, a) and updates Q-value by the temporal
difference (TD) method:
Q(s, a)←− Q(s, a)+ α[R + γ max

a′∈A
(Q(s′, a′)− Q(s, a))]

where s′ is the successor state, α ∈ (0, 1] is learning rate
and γ ∈ [0, 1] is discount rate. The TD method is performed
recursively for all the experiences until convergence. The key
idea of Q-learning is to obtain the optimal policy by selecting
the optimal action (the one with the highest Q-value Q�(s, a))
for every state in Q-table.

However, for a system with large state space and action
space, the calculation of Q-table is quite time-consuming and
space-consuming. What is more, updating the Q-table becomes
difficult and the convergence speed becomes very slow because
a single trajectory is very sparse in overall space.

(2) Deep learning form: To solve the limitations imposed
by the space, the deep neural network with a set of weights
θ is used as an approximation function to calculate the
Q-value Q(s, a) e.g., Q(s, a) ≈ Q(s, a, |θ). In deep
Q-network (DQN), the loss function is the error between the
target and actual function value, as defined below:
Li(θi) = E[(rt+1 + γ max Q(st+1, a′, |θ−i )− Q(st , a, |θi))

2]
where γ ∈ [0, 1], θ−i is precursor weights and a′ is the
precursor action. By reducing the error between the objective
function value and actual function value, the gradient of the
objective function value is obtained and optimized. Finally,
weight θ is updated by utilizing:

∇θi Li (θi) = E[(rt+1 + γ max Q(st+1, a′, |θ−i )

− Q(st , a, |θi))
2]∇θi Q(st , a, |θi)

2

where θ−i is precursor weights. The framework diagram of
DRL algorithms is shown in Fig. 3.

Fig. 3. DRL based framework.

Fig. 4. HRL based framework.

In essence, DQN only achieves small-space storage Q-table
through the generalization ability of neural network, but does
not solve the problem of low efficiency in exploration. The
neural network can only infer the quality of other actions from
the existing Q value, but can not make the correct judgment of
Q value autonomously. Therefore, the generalized problem is
still unsolved: RL is not good at judging unexplored strategies,
and RL still needs to try almost every alternative possibility.
To solve these problems, this paper adopts a hierarchical
structure based on DRL with two additional modules, PK and
DA modules. It aims to further reduce the action space at the
level of high abstract dimension, avoids some obvious bad
action choices and improves the exploration efficiency.

V. PROPOSED HRL FRAMEWORK

In this section, the details of our hierarchical policy
framework are shown in Fig. 4. There are three sequential
task controllers in the hierarchical policy framework. The
downstream sub-task controller learns tasks under the
constraints of the results of the upstream controller, that is,
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they are guided by the upstream controller. In addition, based
on the prior knowledge of system structure dynamics, two
methods to improve learning efficiency of the HRL framework
are proposed.

A. Hierarchical Agent Composition

This section illustrates the links between the meta-controller
(corresponds to the meta access control task) and sequence
controllers (corresponds to sequence sub-tasks). The policy in
this paper is denoted as π(s | g) : S → A, where goal g is
restriction (guidance) from upstream controller. It is mentioned
that goal g is not necessary. If there is no goal g, policy π(s) :
S → A means there is no restriction (guidance) from upstream
controller,which is exactly normal notation.

We manually decompose the meta access control policy
πMeta(s) : S → A into three crucial sequence steps and design
three corresponding controllers to learn the sub-policy, namely
high-level controller πh(s) : S → G1, middle-level controller
πm(s | g1) : S → G2 (g1 ∈ G1) and low-level controller
πl(s | g2) : S → A (g2 ∈ G2). The goal G1 is a set of
all number of channels selected for transmission in the single
turn and G2 is a set of all combinations of users be served in
a single turn. The details of the three controllers are shown
below:
• The high-level controllers πh(s) : S→ G1 is responsible

for determining the number of channels is used for the
turn based on the channel status, takes the original state
s ∈ S as the inputs, and chooses the subgoal g1 from G1

as its output action.
• The middle-level controller πm(s | g1) : S → G2 is

responsible for determining which users is serviced based
on the power consumption selected by the high-level
controller and the current channel state, takes the original
state s ∈ S masked by the subgoal of the high-level
controller g1 as the inputs, then chooses a subgoal g2

from G2 as its output action.
• The low-level controller πl(s | g2) : S→ A is responsible

for determining the best channel and user allocation pair
for transmission, takes a state s ∈ S and the subgoal of
the middle-level controller G2 as the inputs, and chooses
a goal action a→ A as its output action.

In essence, goals g1, g2 of the sequential sub-task is the
intermediate state of the mapping from the original input to
the original output, i.e., the meta-policy:

πMeta(s) : s → g1 → g2 → a

each of goals corresponds to a step. Obviously, by increasing
the intermediate states, the original space is divided into
smaller subsets and conversely, for each action a, goals g2 and
g1 are existing.

Moreover, we use an example to illustrate the hierarchical
selection process. Suppose that rap = {1, 2, 3} and the system
has K = 3 orthogonal channels and N = 3 UEs. For a certain
time slot t , the battery state of the AP is b[t] = 3P = 3E0

and the system channel state is given as:

cs[t] =
⎛
⎝3 2 0

1 2 1
1 0 2

⎞
⎠

We assume that, based on cs[t], the high-level controller
selects a goal G1 = 2, which means the high-level controller
decided to use 2 orthogonal CH to transmit in this time slot.
Then, based on the cs[t] and G1 = 2, we assume that the high-
level controller selects a target G2[t] = [1, 1, 0], which means
the mid-level controller decided to provide data transmission
services for U E1 and U E2 in this time slot. Finally, based on
the cs[t] and G2[t] = [1, 1, 0], we obtain the masked

cs[t] =
⎛
⎝3 2 0

1 2 1
0 0 0

⎞
⎠

and then assume that the low-level controller selects an action:

a[t] =
⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠

which means the low-level controller decided to provides data
transmission services for U E1 through orthogonal channels
C1 and U E2 through orthogonal channels C2 in this time
slot. From the currently selected a[t] and s[t], we can directly
compute R with the Hadamar product of cs[t] and a[t]:

R(s[t], a[t]) = a[t] ◦ cs[t]
=

N∑
i=1

K∑
j=1

ai, j [t] ∗ csi, j [t]

= 3 ∗ 1+ 2 ∗ 1 = 5

We can intuitively verify that of all possible actions, the action
that produces the greatest reward is the currently selected
action a[t].

From the above example, the sub-controller has fewer space
and better explanations than the meta-controller, and it is easier
to learn stable policy. However, the action space of the low-
level controller (i.e. action space of the original problem) is
not reduced. Although learning efficiency is improved, the
large scale of neural network output layer limits the overall
architecture design of neural network.

Since the output of the high level controller is
a ∈ [0, · · · , N], the output of the mid level controller can
be calculated as

(N
a

)
. Furthermore, the output of the low level

controller is on the order of
(N

a

)∗ N !
(N−a)! . Even if N is 101, the

lower level controller has an action space output dimension of
over 105. Therefore, we propose deterministic action learning
module to avoid the representation difficulty of lower level
controller.

B. Deterministic Action (DA) Learning Module

The exploration strategy used in reinforcement learning
is random exploration strategy, which leads to low learning
efficiency. However, not all potential actions need to be
explored. Under the same conditions, some actions are
definitely worse than others, for example, sending fewer
packets with the same energy is definitely not the potential
best.

Considering that the layered reinforcement learning strategy
brings better knowledge of structural dynamics, the best
action is sometimes deterministic under the guidance of the
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upper level, and random search is not needed. Based on
the mentioned above, firstly, the low-level channel matching
problem is formulated into an optimization problem with
constraints g1, g2 determined by the mid-level controller and
the low-level controller as:

max
a∈A

N∑
i

K∑
j

a ◦ s (2)

s.t. ai, j ∈ {0, 1}, ∀i ∈ {1, · · · , N},∀ j ∈ {1, · · · , K }
N∑
i

K∑
j

ai, j = g1 (3)

K∑
j

ai, j = 1, if i ∈ g2 (4)

K∑
j

ai, j = 0, if i /∈ g2 (5)

N∑
i

ai, j ≤ 1,∀ j ∈ {1, · · · , K } (6)

K∑
j

ai, j ≤ 1,∀i ∈ {1, · · · , N} (7)

where a is the target action and s is the current state. Eq. (4)
means that the channel is selected to work, that is, the channel
number is present in target G. On the other hand, Eq. (5)
means that the channel is not selected. Eq. (6) and Eq. (7)
represents the restriction of the orthogonal channel.

Because the target action a is represented by a matrix and
satisfies ai, j ∈ {0, 1}, our problem becomes a deterministic
0-1 integer programming problem (IP), which Eq. (2) is an
NP-hard problem. However, because of Eq. (4) and Eq. (5),
our optimization goal becomes a special kind of IP problem
– the maximum weight matching problem.

Theoretically, it’s possible to loop over all the possible
combinations and calculate it’s reward but the time compu-
tation is too high. Since the Kuhn-Munkres (KM) method
is an effective approach for solving the maximum weighted
matching problem, we propose a KM method based algorithm
Alg. 1 to find the optimal action a under constraint g2.
In Alg. 1, we first initial the optimal action in step 1 and
rewrite the original optimization problem by masking the
original state in step 2. Then in step 3 to step 4 we use the
KM algorithm to obtain the matching result with the largest
weight. In step 5 to step 9, we generate the corresponding
selection action based on the largest weight in step 4. Finally,
in step 10, return the optimal action a∗. The complexity of
Algorithm 1 is O((N × K )3).

C. Prior Knowledge (PK) Learning Module

In this section, PK module is proposed to improve the
efficiency of sample selection, which makes agent adapt
to different learning tasks faster. The key to improving
sample efficiency is to find common knowledge between
different tasks. In fact, for the considered system, there
are some learnable structural features that are independent

Algorithm 1 Optimal Action Search Algorithm
Require: cs: channel state; N : number of users; K : number

of channel; g1: high-level target; g2: mid-level target;
Ensure: Optimal action a∗ under g1 and g2

1: Initialize a∗ ← [0]N×K

2: Mask the rows of cs according to g2 and invert each
element in cs

3: Use Kuhn-Munkres method to solve the matching problem
of cs

4: Find the a with largest maximum reward
5: for i , j in a do
6: if ai, j �= 0 then
7: a∗i, j ← 1
8: end if
9: end for

10: return a∗

of environmental dynamics (channel gain process and
energy harvesting process). Especially when using the HRL
framework to decompose the decision into continuous sub
decisions, the functions of these structural features are also
decoupled. For example, from the energy point of view, if both
EH energy and battery energy are at a high level (almost full),
the action of the high-level controller always tends to select
more channels for transmission, thus preventing the waste
caused by excessive consumption of low energy. On the other
hand, once the action of the high (middle) level controller is
selected, the selection of the low-level controller has nothing
to do with the EH process and only depends on the channel
quality and the number of transmission channels (selected
users).

The above shows that there are some common knowledge
between tasks in the system under consideration. We believe
that even if the hypothetical environment is very different from
the real working environment, at least some structural features
may still help agents to better capture the environmental
features at the beginning of learning. Therefore, we introduce
a good prior for RL by assigning an appropriate initial value
to the neural network. The initial value is obtained by training
the agent in a proper hypothetical environment.

Therefore, the overall algorithm is shown in Alg. 2:
In Alg. 2, we use two groups of NN as high-level controller

and middle-level controller while the low-level controller is
replaced by DA module. In step 1 to step 4, we initialize
the neural network with the pretrained weights from PK
module. Then in the loop (step 6 to step 16), we initialize
the environment and conduct corresponding experiments and
update the neural networks used to maintain the high-
level controller and the middle-level controller respectively.
Specifically, from step 8 to step 9, the related actions of three
levels are carried out separately. In step 10, the environment
generates reward and transfers it to the next environment.
In step 11 to 12, the experience are stored separately in
experience replay buffer. Finally, in step 13 to 15, a minibatch
of experiences are extracted from the experience replay buffer
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Algorithm 2 HRL-Based Framework
1: Initialize DNN parameters θh for high-level Q-network and

θm for mid-level Q-network with random weights
2: Initialize experience replay buffer: βh for higher level, and

βm for mid-level
3: Train HRL in arbitrary transition model to get the

pretrained weights θ
pre

h and θ
pre

m

4: Set θh = θ
pre

h and θm = θ
pre

m .
5: repeat
6: Initialize the environment, obtain initial state s
7: for time t = 1, 2, ..., tmax do
8: Choose sequence high-level action ah and mid-level

action am using ε-greedy method
9: Choose low-level action by DA module al

10: Execute action al , receive reward rt from the
environment and observe next state s′

11: Collect and save the tuple (s, ah, r, s′) in βh

12: Collect and save the tuple (s, al, r, s′) in βl

13: Sample a minibatch in βh to finely tune θm with θ−m
14: Sample a minibatch in βl to finely tune θl with θ−l
15: Update current state s = s′
16: end for
17: until Convergence

and used to update the neural network. This loop is repeated
until the neural network converges.

VI. PERFORMANCE EVALUATION

In this section, we first introduce the setup of experimental
environment. Then we carry out experiments to evaluate the
proposed algorithms.

A. Setup

To implement our proposed framework, we use two separate
dueling DQN (target network and online network) which share
the same structure for both high-level controller and mid-level
controller. The number of neurons in input layer is equal to
the sum of numbers of states and sub-goals, and the number
of neurons in output layer corresponds to the dimensions of
action. Both dueling DQN include two hidden layers, and the
number of neurons in each hidden layer is 1.5 times that of the
output layer corresponding to the dimensions of action space.
The activation function for hidden layers is Relu function. The
target network is updated every step, and the online network
is updated every fixed step to break the data correlation by
copying the weights from the target network. The low-level
controller is made of DA module. The detailed parameters
used in RL experiments are shown in the Tab. I.

In order to present smoother and more general performance
comparisons, the rewards given in all numbers are further
averaged by locally weighted linear regression smoothing
method. All the simulations are performed on the deep
learning framework in Keras. We set same random seeds to
ensure that each round of experiments is fair under different
environment settings.

TABLE I

RL SETTINGS

TABLE II

SYSTEM SETTINGS

The maximum supportable data rates of the channels
w.r.t the UEs in each time slot are subjected to a certain
environmental distribution f (r) (channel model) given in
Tab. III. Thus, the probability to support a maximum data

rate rm(1 ≤ k ≤ m) is given by
rk+1∫
rk

f (r)dr . The energy

harvesting rate in each time slot is subjected to a Poisson
arrival process with different arriving rates (given in Tab. II).
We set the transmitting power at the AP as P = E0.

The main performance metric is the long-term average
throughput of the system. The state, reward, primitive action
spaces, and hierarchical action spaces was discussed in the
previous article. In the considered system, the state and action
spaces increase exponentially with the number of channels and
UEs. For both efficiency and equity of proposed framework,
we conduct experiments for system with a moderate number of
UE and channels (high-dimensional action space leads to the
large dimension of DQN output layer, which limits the size of
the overall neural network), i.e., the following multi-channel
wireless communication system is considered as in Tab. II.

Although the scale of the system seems not large, but in fact,
the corresponding action space and state increase exponentially
with it to a great extent. Take the considered system with
6 channels and 8 users as an example. The action space can
be calculated by

∑6
i=0 Ci

6 × Ai
8 ≈ 105. The state space can

be calculated by 56×8 ≈ 1033. Therefore, the corresponding
combination (s, a) can be calculated as 1038. Too many pairs
of potential actions and states may cause great difficulties
in policy convergence. Because the dimension of Q-value of
neural network output layer is equal to that of action space, too
many neural network parameters will cause memory overflow,
limit the scale of neural network.

B. Methods Compared

Our framework is compared against the following methods
in the experiments:
• Random: For each time slot, the agent randomly

selects an action to execute communication with random
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TABLE III

ENVIRONMENTAL SETTINGS

transmission power. As a degenerate strategy without
learning knowledge, random scheme plays a baseline
here.

• DRL: We adapt the traditional dueling DQN framework,
which is the most common DRL scheme in recent works.
Due to the limitation of output action space, the total
number of layers of Q-network used is only two layers.

• HRL: We adopt the traditional HRL framework, which
decomposed the original problem as shown described in
Section V-A. The HRL framework is not contain PK and
DA module. In this framework, each controller is served
by a separate neural network.

• HRL+PK: On the basis of HRL, PK module is added.
• HRL+DA: On the basis of HRL, the low-level controller

is replaced with DA module.
• COMB+DA: On the basis of HRL+DA, the high-

level controller and the middle-level controller of HRL
are replaced with the combined controller (COMB) to
directly determine which channels participate in the
matching.

• HRL+DA+PK: On the basis of HRL, the low-level
controller is replaced with DA module, and a better set of
weights is obtained from PK module for HRL. The other
settings are exactly the same as HRL.

Then, we evaluate the above methods in ten different
environments as shown in Tab. III. Among them, Env1-Env6
are prepared for normal scale experiments, and Env7-Env10
are prepared for large-scale experiments.

C. Results And Discussion

In this section, we evaluate the performance (throughput),
different selection schemes, scalability, and learning efficiency
of the algorithm numerically. Considering that the simulation
experiment environment in which our system is located
is highly random, we make locally weighted scatter plots
smoothing on the performance result graph of the experiment,
so as to make a more intuitive comparison.

1) Performance: In Fig. 5, the performance of the proposed
HRL framework (marked as HRL+DA+PK) is compared with
other methods mentioned before. All the models used in the
comparison of Fig. 5 have been trained. The experimental
results as shown in Fig. 5. It can be seen from Fig. 5
that the performance of HRL methods are better than DRL
and random methods. Specifically, the average throughput in

Fig. 5. Performance comparison in different environments.

TABLE IV

SCALABILITY ENVIRONMENTAL RESULTS-1

six environments shows that the effect of HRL, HRL+PK,
HRL+DA, and HRL+DA+PK methods are about 39.85%,
54.10%, 56.42%, and 65.35% higher than that of DRL,
respectively. The reason is that too large space and not good
EH energy condition cause the DRL method not learning
much knowledge. The experimental results support that HRL
framework has better learning ability than DRL framework.
In addition, the average throughput of our framework
(HRL+DA+PK) is the highest among all approaches in every
environment. The experimental results in Fig. 5 support that
PK and DA learning modules improve the performance of
access control in long-term throughput of the system.

2) Different Selection Schemes: The combination of the
three different selection schemes proposed is the highest level
abstraction of the original matching scheme. Correspondingly,
the DRL scheme can be considered as the lowest level
abstraction (no abstraction) of the original matching problem.

Therefore, to investigate the effect of the scheme with lower
abstract level than the scheme proposed, a combined controller
(COMB) is used to replace the high-level controller and the
mid-level controller in HRL to directly make decisions on the
users participating in the matching. The combined controller
is a neural network of the same size as that used in DRL.
The COMB + DA module is compared with the proposed
HRL + DA scheme.

It can be seen from Fig. 5 that the average throughput of
COMB + DA is worse than that of HRL + DA in six different
environments. This indicates that the multilevel division can
help selection schemes achieve better performance.

3) Scalability: The scalability is to evaluate the throughput
of proposed method when the U-C (user-channel) scale is
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Fig. 6. Learning efficiency in different environments.

TABLE V

SCALABILITY ENVIRONMENTAL RESULTS-2

expanded. Moreover, to eliminate the influence of energy on
the throughput, the EH value is correspondingly expanded.
In the experiment, based on the original U-C scale (8 users and
6 channels) and the original EH value (Normal N (μ = 3.5E0,
σ = 1)), the U-C scale and EH value are expanded to
twice and triple the original scale (value). Under two different
channel gain conditions, the experiment is carried out based
on four simulation environments. Tab. IV and Tab. V present
experimental results of groups (env-2 and env-5) with same
channel gain.

It can be seen from the diagonal grid of the Tab. IV and
Tab. V, the average throughput of the experimental group is
twice or triple original U-C scale experimental group. This
shows that the proposed method has a good scalability.

4) Learning Efficiency: In Fig. 6, the performances of
these frameworks during the training process are presented.
Among the results in Fig. 6, our framework achieved better
initial performance at the very beginning and showed a
higher learning efficiency. By comparing with the DRL
framework, our framework is better all the time for both
initial performance and learning efficiency. In Fig. 6(a) and

Fig. 6(e), even if it falls into the local minimum point in
several environments, our framework soon starts to rise and
quickly achieves better results than HRL. The initial decline
can be explained as the difference between the environment
in which the PK model is located and the real environment
(because we use the same PK model and fixed random seeds,
the trend is similar in different environmental models). Due to
the existence of DA module, the invalid low-level action space
is greatly reduced. Therefore, from 2000 steps of interaction,
all the effects have been greatly improved. If the final results
of the HRL framework are taken as the benchmark, it only
takes about 60% of the time of the HRL framework for our
model to reach the benchmark.

VII. CONCLUSION

In this paper, we propose a HRL based access control
framework to dynamically select access control, in order
to maximize the long-term system average throughput.
Unlike traditional studies, our method does not require
any assumptions about channel distribution, but relies on
the interaction between the agent and the communication
environment. The proposed HRL framework decomposes
the original control problem into three sequence control
sub-problems through task abstraction, namely, high-level
channel number selection problem, mid-level channel selection
problem and low-level channel matching problem. Each sub-
problem is solved in sequence and the final optimal scheme is
obtained by combining the sub-problem schemes in the form
of hierarchical. In order to improve the learning efficiency, two
learning modules, DA module and PK module, are proposed.
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The DA module solves the channel matching problem under
the additional constraints given by the previous sub-problem,
which selects definite good lower-level matching actions
instead of traditional random exploration. The PK module
provides the framework with the common knowledge of
the system learned from the hypothetical environment for
better initial performance. Simulation experiment compares
our scheme with recently HRL, DRL and several conventional
transmission schemes. The experiment results show that the
transmission strategy obtained by our proposed framework
achieves better throughput performance and better learning
efficiency.

Our HRL method provides a novel way for the research
of access control in the field of wireless communication.
However, in the proposed framework, the transmission rate
in the considered system is discretized into enumerable
power levels, which can be further increased to a continuous
level. In the future, we will explore new methods applicable
to continuous action space, and adaptively control the
transmission power to exploit the fading channel and multi-
user diversity resulting in higher throughput.
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