学术动态

位置: 首页 > 科学研究 > 学术动态 > 正文

学术报告五十九:编码与密码及相关数学理论系列报告三则

时间:2021-07-14 作者: 点击数:

学术报告信息(一)

周正春: The minimum linear locality of linear codes

报告时间: 2021年7月15日(星期四)8:00-9:30

报告地点:翡翠湖校区科教楼B座1702室

:周正春教授

工作单位:西南交通大学

举办单位:数学学院

报告简介:

Locally recoverable codes were proposed for the recovery of data in distributed and cloud storage systems. In the past decade, a lot of progress on the study of locally recoverable codes has been made. Despite of the good progress made by now, there is a lack of general theory on the minimum linear locality of linear codes. In addition, the minimum linear locality of many known families of linear codes are not studied in the literature. Motivated by these two facts, this talk report a general theory about the minimum linear locality of linear codes, and investigates the minimum linear locality of several families of linear codes. The minimum linear locality of many families of linear codes are settled with the proposed general theory.

报告人简介:

周正春,西南交通大学数学学院教授、博士生导师。一直致力于面向通信、雷达、数据降维、信息安全的序列和编码研究,在领域权威期刊发表论文60余篇,先后完成多项国家级、省部级、国防和企业委托项目。入选国家“青年拔尖人才”,曾获全国百篇优秀博士论文获、教育部自然科学二等奖。

学术报告信息(二)

唐春明: Boolean functions with high (fast) algebraic immunity and their applications in linear codes

报告时间: 2021年7月15日(星期四)9:30-11:00

报告地点:翡翠湖校区科教楼B座1702室

:唐春明教授

工作单位:西华师范大学

举办单位:数学学院

报告简介:

In the talk, we propose a new parameter to measure the resistance of a Boolean function to fast algebraic attack. We also introduce the notion of fast immunity prole and show that it informs both on the resistance to standard and fast algebraic attacks. Further, a coding-theory approach to the characterization of perfect algebraic immune functions is presented. Via this characterization, infinite families of binary linear complementary dual codes (or LCD codes for short) are obtained from perfect

algebraic immune functions. Moreover, two methodologies for constructing minimal binary codes from sets, Boolean functions and vectorial Boolean functions with high algebraic immunity, are proposed. More precisely, a general construction of new minimal codes using minimal codes contained in Reed-Muller codes and sets without nonzero low degree annihilators is presented. The other construction allows us to yield minimal codes from certain subcodes of Reed-Muller codes and vectorial Boolean functions with high algebraic immunity.

报告人简介:

唐春明,男,博士,西华师范大学数学与信息学院副院长、研究员。2012年博士毕业于北京大学。先后在巴黎第八大学和香港科技大学从事博士后研究工作。主要研究密码、编码及其相关的数学理论。近年来在线性码、LCD码、密码函数、组合设计等领域做出了一系列突出成果。先后主持国家自然科学基金青年项目和面上项目各一项,获得教育部高等学校科学研究优秀成果奖自然科学类二等奖一项。发表研究论文60余篇,其中SCI、EI检索论文50余篇,代表性成果发表在国内外重要学术期刊《IEEE Transactions on Information Theory》《Finite Fields and Their Applications》《Designs,Codes and Cryptography》《Science China》和《China Communications》。曾访问多所国内外知名院校;目前担任三个国际期刊的编委。

学术报告信息(三)

张俊: Finite geometry and Reed-Solomon codes

报告时间: 2021年7月15日(星期四)11:00-12:30

报告地点:翡翠湖校区科教楼B座1702室

:张俊副教授

工作单位:首都师范大学

举办单位:数学学院

报告简介:

It is well-known that MDS codes and Reed-Solomon codes are corresponding to arcs and normal rational curves in finite geometry, respectively. In this talk, we discuss the relationship between error distance problem and deep hole problem of Reed-Solomon codes and the corresponding geometry problems. This is joint work with Daqing Wan and Krishna Kaipa.

报告人简介:

张俊,2014年8月至今就职于首都师范大学数学科学学院,副教授,主要研究方向为编码理论与密码学。张俊,2004年9月-2008年6月就读于南开大学数学试点班获学士学位;2008年9月-2014年6月就读于南开大学陈省身数学研究所获博士学位;曾获留学基金委资助赴美国加州大学欧文分校联合培养,以及美国俄克拉荷马大学学术访问。在国内外学术期刊《Math. Ann.》、《IEEE Trans. Info. Theory》、《Finite Fields Appls》、《中国科学·数学》等以及国际会议《IEEE ISIT》、《TAMC》等上发表论文十余篇。主持国家自然科学基金面上项目、青年项目以及多项北京市基金项目。

上一篇:学术报告六十:赵会江—Radially Symmetric Stationary Waves for the Exterior Problem of Multidimensional Burgers Equation

下一篇:学术报告六十一:杨金榜—Grothendieck’s étale fundamental groups and their representations