个人简介
罗肖,合肥工业大学数学学院讲师,硕士生导师。2018年毕业于华中师范大学,获理学博士学位,师从李工宝教授。主要研究领域为非线性偏微分方程和变分法。在J. Differential Equations,中国科学(英文版)等国内外知名期刊发表SCI论文十余篇。主持国家自然科学基金青年科学基金项目一项。
科研成果
[17]Luo, Xiaoand Yang, Tao Stable solitary waves for pseudo-relativistic Hartree equations with short range potential,Nonlinear Anal.207 (2021), 112275.
[16] Cao, Daomin; Jia, Huifang;Luo, XiaoStanding waves with prescribed mass for the Schrödinger equations with van der Waals type potentials.J. Differential Equations276 (2021), 228–263.
[15] Jia, Huifang; Li, Gongbao;Luo, XiaoStable standing waves for cubic nonlinear Schrödinger systems with partial confinement.Discrete Contin. Dyn. Syst.40 (2020), no. 5, 2739–2766.
[14] Jia, Huifang;Luo, XiaoStanding waves with prescribed mass for the coupled Hartree–Fock system with partial confinement.Annali di Matematica Pura ed Applicata(2020).
[13] Li, Gongbao;Luo, XiaoExistence and multiplicity of normalized solutions for a class of fractional Choquard equations.Sci. China Math.63 (2020), no. 3, 539–558.
[12]Luo, XiaoNormalized standing waves for the Hartree equations.J. Differential Equations267 (2019), no. 7, 4493–4524.
[11] He, Yi;Luo, XiaoConcentrating standing waves for the Gross-Pitaevskii equation in trapped dipolar quantum gases.J. Differential Equations266 (2019), no. 1, 600–629.
[10]Luo, XiaoStability and multiplicity of standing waves for the inhomogeneous NLS equation with a harmonic potential.Nonlinear Anal. Real World Appl.45 (2019), 688–703.
[9]Luo, Xiao; Ye, Hongyu Multiplicity and stability of standing waves for the nonlinear Schrödinger-Poisson equation with a harmonic potential.Math. Methods Appl. Sci.42 (2019), no. 6, 1844–1858.
[8] Huang, Wentao;Luo, XiaoPositive ground state solutions for fractional Kirchhoff type equations with critical growth.Math. Methods Appl. Sci.42 (2019), no. 3, 1018–1038.
[7]Luo, XiaoMultiple normalized solutions for a planar gauged nonlinear Schrödinger equation.Z. Angew. Math. Phys.69 (2018), no. 3, Paper No. 58, 17 pp.
[6]Luo, XiaoExistence and stability of standing waves for a planar gauged nonlinear Schrödinger equation.Comput. Math. Appl. 76 (2018), no. 11-12, 2701–2709.
[5] Jia, Huifang;Luo, XiaoExistence and concentrating behavior of solutions for Kirchhoff type equations with steep potential well.J. Math. Anal. Appl. 467 (2018), no. 2, 893–915.
[5] He, QiHan;Luo, XiaoA positive solution of a nonlinear Schrödinger system with nonconstant potentials.Sci. China Math.60 (2017), no. 12, 2407–2420.
[3] Li, Gongbao;Luo, XiaoNormalized solutions for the Chern-Simons-Schrödinger equation in R2.Ann. Acad. Sci. Fenn. Math.42 (2017), no. 1, 405–428.
[2] Li, Gongbao;Luo, Xiao; Shuai, Wei Sign-changing solutions to a gauged nonlinear Schrödinger equation.J. Math. Anal. Appl.455 (2017), no. 2, 1559–1578.
[1]Luo, Xiao; Wang, Qingfang Existence and asymptotic behavior of high energy normalized solutions for the Kirchhoff type equations in R3.Nonlinear Anal. Real World Appl.33 (2017), 19–32.
参见:https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=1176401