硕士生导师

位置: 首页 > 师资队伍 > 硕士生导师 > 正文

罗肖

  • 职称 :讲师
  • 电话:翡翠科教楼B座1606
  • 邮箱 :luoxiaohf@163.com
  • 职务 :科研秘书
  • 所属系 :信息与计算科学系
  • 主讲课程 :高等数学,线性代数
  • 研究领域 :非线性偏微分方程与变分方法
教育经历
工作经历
科研项目
  • 国家自然科学基金青年项目,两类非线性椭圆型方程解的存在性、稳定性与集中性,2020.01-2022.12,28万元,主持
    国家自然科学基金面上项目,几类非局部型非线性泛函的临界点的存在性和集中性的研究,2018.01-2021-12,48万元,参加
    国家自然科学基金面上项目,泛函分析框架下的几类典型的椭圆问题,2017.01-2020.12,48万元,参加
    国家自然科学基金面上项目,几类变分形式的非线性椭圆型方程的解的存在性与解的性质研究,2014.01-2017.12,55万元,参加
研究成果
社会兼职
  • 美国数学会评论员(reviewer for Mathematical Reviews/MathSciNet)
其他

个人简介

罗肖,合肥工业大学数学学院讲师,硕士生导师。2018年毕业于华中师范大学,获理学博士学位,师从李工宝教授。主要研究领域为非线性偏微分方程和变分法。在J. Differential Equations,中国科学(英文版)等国内外知名期刊发表SCI论文十余篇。主持国家自然科学基金青年科学基金项目一项。

科研成果

[17]Luo, Xiaoand Yang, Tao Stable solitary waves for pseudo-relativistic Hartree equations with short range potential,Nonlinear Anal.207 (2021), 112275.

[16] Cao, Daomin; Jia, Huifang;Luo, XiaoStanding waves with prescribed mass for the Schrödinger equations with van der Waals type potentials.J. Differential Equations276 (2021), 228–263.

[15] Jia, Huifang; Li, Gongbao;Luo, XiaoStable standing waves for cubic nonlinear Schrödinger systems with partial confinement.Discrete Contin. Dyn. Syst.40 (2020), no. 5, 2739–2766.

[14] Jia, Huifang;Luo, XiaoStanding waves with prescribed mass for the coupled Hartree–Fock system with partial confinement.Annali di Matematica Pura ed Applicata(2020).

[13] Li, Gongbao;Luo, XiaoExistence and multiplicity of normalized solutions for a class of fractional Choquard equations.Sci. China Math.63 (2020), no. 3, 539–558.

[12]Luo, XiaoNormalized standing waves for the Hartree equations.J. Differential Equations267 (2019), no. 7, 4493–4524.

[11] He, Yi;Luo, XiaoConcentrating standing waves for the Gross-Pitaevskii equation in trapped dipolar quantum gases.J. Differential Equations266 (2019), no. 1, 600–629.

[10]Luo, XiaoStability and multiplicity of standing waves for the inhomogeneous NLS equation with a harmonic potential.Nonlinear Anal. Real World Appl.45 (2019), 688–703.

[9]Luo, Xiao; Ye, Hongyu Multiplicity and stability of standing waves for the nonlinear Schrödinger-Poisson equation with a harmonic potential.Math. Methods Appl. Sci.42 (2019), no. 6, 1844–1858.

[8] Huang, Wentao;Luo, XiaoPositive ground state solutions for fractional Kirchhoff type equations with critical growth.Math. Methods Appl. Sci.42 (2019), no. 3, 1018–1038.

[7]Luo, XiaoMultiple normalized solutions for a planar gauged nonlinear Schrödinger equation.Z. Angew. Math. Phys.69 (2018), no. 3, Paper No. 58, 17 pp.

[6]Luo, XiaoExistence and stability of standing waves for a planar gauged nonlinear Schrödinger equation.Comput. Math. Appl. 76 (2018), no. 11-12, 2701–2709.

[5] Jia, Huifang;Luo, XiaoExistence and concentrating behavior of solutions for Kirchhoff type equations with steep potential well.J. Math. Anal. Appl. 467 (2018), no. 2, 893–915.

[5] He, QiHan;Luo, XiaoA positive solution of a nonlinear Schrödinger system with nonconstant potentials.Sci. China Math.60 (2017), no. 12, 2407–2420.

[3] Li, Gongbao;Luo, XiaoNormalized solutions for the Chern-Simons-Schrödinger equation in R2.Ann. Acad. Sci. Fenn. Math.42 (2017), no. 1, 405–428.

[2] Li, Gongbao;Luo, Xiao; Shuai, Wei Sign-changing solutions to a gauged nonlinear Schrödinger equation.J. Math. Anal. Appl.455 (2017), no. 2, 1559–1578.

[1]Luo, Xiao; Wang, Qingfang Existence and asymptotic behavior of high energy normalized solutions for the Kirchhoff type equations in R3.Nonlinear Anal. Real World Appl.33 (2017), 19–32.

参见:https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=1176401