
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Computing Resource Pricing for Satellites in the
OEC System: A Bilevel Optimization Approach

Xinyu Wang, Qi Wang, Qingshan Wang and Manxia Cao

Abstract—As an emerging paradigm, orbital edge computing
(OEC) has garnered significant attention due to its advantages in
global coverage and seamless connectivity. Most existing research
adopts a user-centric approach, focusing on enhancing user
satisfaction, but overlooks the economic objectives of satellites. To
fill this gap, this paper investigates the collaborative optimization
of computing resource pricing, task offloading, and resource
allocation, aiming to maximize satellite profits while ensuring fair
resource distribution to meet user computing demands. Firstly,
a bilevel optimization problem (BOP) is established, considering
the coupling between satellite and user strategies. In the upper
level, satellites determine unit prices to maximize total profit,
while in the lower level, users decide offloading modes and
required computing resource amounts based on given prices.
Moreover, by deriving the relationship between user resource
demands and offloading modes, the mixed variable optimization
in the original BOP’s lower level is transformed into a discrete
variable optimization. To address the transformed BOP, we
reduce the search space through server pruning and design
a nested optimization algorithm, which utilizes particle swarm
optimization (PSO) and matching game theory in upper and
lower levels, respectively. Lastly, experiments prove our algorithm
surpasses state-of-the-art in satellite total profit and user task
completion rate.

Index Terms—Orbital edge computing, computation offload-
ing, bilevel optimization, matching game.

I. INTRODUCTION

The rapid growth of compute-intensive and latency-sensitive
applications, such as AR/VR and 3D modeling, poses sig-
nificant challenges to conventional terrestrial networks. As a
key 6G technology, mobile edge computing (MEC) mitigates
cloud congestion by offloading tasks to edge nodes closer
to users [1], [2]. However, MEC deployment is limited in
areas such as oceans and remote rural regions due to insuffi-
cient communication and power infrastructure [3]. Moreover,
terrestrial networks remain vulnerable to disruptions from
natural disasters, reducing their reliability in mission-critical
scenarios.

To address these challenges, satellite communication has
emerged as a promising solution to extend network coverage
[4]. Companies such as Telesat and SpaceX are deploying
large-scale low Earth orbit (LEO) satellite constellations to
provide global broadband services [5]. In 2019, Bradley et
al. introduced the concept of orbital edge computing (OEC),
drawing inspiration from terrestrial MEC systems [6]. By

Manuscript received September 28, 2024; accepted May 4, 2025. (Corre-
sponding author: Qi Wang.)

Xinyu Wang, Qi Wang, Qingshan Wang, and Manxia Cao are with
the School of Mathematics, Hefei University of Technology, Hefei, An-
hui 230601, China. E-mail: {2022111428, manxiacao}@mail.hfut.edu.cn,
{qswang, wangq}@hfut.edu.cn.

integrating edge computing into satellite networks, OEC brings
computation closer to users and improves service responsive-
ness [7]. As a result, satellite–terrestrial integrated networks
(STINs) are expected to enhance global connectivity and
enable next-generation communication infrastructures [8], [9].

Recent research on OEC spans several key areas, including
satellite networking [10], research platforms [11], system
architectures [12], [13], as well as resource management
and computation offloading [14], [15]. Carlos et al. [16]
optimized global flight plans for large satellite constellations
using genetic algorithms, while Kssing et al. [17] introduced
Hypatia, a simulation tool for LEO constellations. Zhai et
al. [18] explored decentralized federated learning, leveraging
satellite constellation topology for efficient model aggregation
without central servers. These advancements enhance OEC
theory and drive the development of space-air-ground inte-
grated networks.

Significant progress has been made in the areas of resource
management and computation offloading within OEC systems.
However, most existing studies adopt a user-centric perspec-
tive, focusing on task offloading and resource allocation to
reduce latency or energy consumption [19]–[22]. While these
approaches improve user performance, they often overlook
the economic goals and resource sustainability of satellite
operators. Given the limited onboard computing resources
[23]–[25], prioritizing user satisfaction alone may result in
excessive resource allocation. To address this, some studies
have proposed dynamic pricing mechanisms to enhance op-
erator revenue and improve resource efficiency [26], [27].
Nonetheless, these approaches often treat user offloading and
satellite pricing as separate problems, overlooking the strong
coupling between them. In practice, pricing directly affects
users’ offloading decisions based on perceived cost-efficiency.
These decisions, in turn, determine computing demand and
satellite load, which subsequently influence the provider’s
pricing strategy. This interaction creates a feedback loop,
and ignoring it may result in suboptimal performance and
inefficient resource utilization.

To fill the gap, this paper proposes a bilevel optimization
framework that captures the inherent coupling among satellite
pricing, task offloading, and resource allocation, enabling their
collaborative optimization within a unified framework. In this
framework, satellite operators act as service providers, setting
prices for computing resources to maximize their total profit.
Ground users respond by selecting offloading modes and
determining resource demands based on cost-efficiency and
task requirements. The pricing decisions directly influence
users’ offloading behaviors, which in turn affect the distri-

Copyright (c) 20xx IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must
be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3569553

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on June 28,2025 at 01:29:25 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

bution of resource demands across satellites and feed back
into subsequent pricing strategies, forming a coupled decision
loop. The specific contributions are delineated as follows:

• We formulate a bilevel optimization problem (BOP) for
satellite computing resource pricing, aiming to maximize
satellite profits while ensuring fair resource allocation for
user offloading. The upper level optimizes satellite pricing
to maximize profit, while the lower level determines
users’ offloading decisions and resource demands under
time and resource constraints. This formulation differs
from prior studies that separately consider pricing or
offloading, and more accurately captures the supply-
demand coupling in OEC systems.

• By analyzing the relationship between optimal resource
demand and offloading modes, we transform the lower-
level MINLP problem into a discrete optimization prob-
lem. We then propose a nested optimization algorithm,
employing particle swarm optimization (PSO) for satellite
profit maximization at the upper level and matching game
theory for user profit maximization at the lower level.

• We assess the proposed algorithm’s performance in terms
of satellite total profit, user task completion rate, and exe-
cution time. Experiments demonstrate that our algorithm
is effective in reducing the runtime while performing
better compared to state-of-the-art algorithms.

The remainder of this paper is organized as follows. Section
II reviews the related work. Section III introduces the satellite
edge computing scenario and defines the profit functions for
users and satellites. Section IV describes the computation
offloading process and formulates the bilevel optimization
problem. In Section V, we transform the original BOP into
a tractable form and propose a nested bilevel optimization
algorithm. Section VI presents the experimental results, and
Section VII concludes the paper.

II. RELATED WORK

Computation offloading in MEC-augmented satellite-
terrestrial networks has gained significant attention [28], [29].
Most existing studies adopt a user-centric perspective, opti-
mizing offloading and resource allocation strategies to enhance
user satisfaction. For example, Cui et al. [19] minimized task
completion latency in a hybrid OEC system using deep rein-
forcement learning and convex optimization. Chen et al. [20]
jointly allocated computing and communication resources in
a mixed-task model, solving an MINLP problem to maximize
user-weighted energy efficiency. Similarly, Cao et al. [21] and
Huang et al. [22] employed alternating optimization and multi-
agent deep reinforcement learning to improve resource utiliza-
tion and reduce energy consumption. However, by focusing
solely on user satisfaction, these approaches often overlook
the limited nature of satellite resources. As a result, resource
allocation may be excessive, making it difficult to balance user
demands with the operator’s economic objectives.

Some studies have explored satellite pricing strategies to
improve operator revenue and resource utilization. Deng et
al. [26] proposed a pricing mechanism for user association,
spectrum allocation, and data pricing. Li et al. [27] developed

a dynamic game model for joint pricing and power allocation
in multibeam satellite systems to balance inter-cell interference
and operational profit. While these studies integrate pricing,
they typically assume users passively respond to fixed pricing
strategies, failing to capture the dynamic interaction between
pricing, offloading, and resource allocation. Recent work has
addressed this limitation through collaborative optimization
frameworks, often leveraging Stackelberg game models. For
example, Patrizi et al. [30] proposed a reputation-based UAV
tracking and data collection framework using Stackelberg
games to optimize offloading decisions and effort-based pric-
ing. Zhang et al. [31] designed a pricing-driven mode selection
scheme where operators optimize pricing via a Stackelberg
game, while users adopt an evolutionary game for mode selec-
tion. However, while Stackelberg-based approaches effectively
model hierarchical decision-making, they primarily emphasize
strategy stability rather than global optimality, which may limit
the maximization of satellite profits.

III. SYSTEM MODEL

This section presents the LEO-assisted edge computing
scenario, followed by the communication, computation, and
energy models, as well as the total profit formulations for users
and satellites.

A. Scenario Model

The satellite edge computing scenario is illustrated in Fig.
1. It involves terrestrial users located in remote areas, such
as deserts, where traditional base stations cannot provide
connectivity. The system consists of a constellation of LEO
satellites arranged in efficient configurations to ensure global
coverage. Each satellite is equipped with an edge server to
provide computational services to users. In the absence of
terrestrial connectivity, users can either process tasks locally or
offload them to satellites via user data links (UDLs). The com-
munication between users and satellites is achieved through
Orthogonal Frequency Division Multiple Access (OFDMA).

Due to satellite and Earth rotations, continuous communi-
cation between all satellites and users is not always feasible.
The nearest satellite with an active connection to the user
area is referred to as the access satellite. Inter-satellite links
(ISLs) enable high-speed, low-latency communication between
the access satellite and other satellites in the constellation.
These links support real-time task scheduling based on task
requirements and satellite computing capabilities. Upon task
completion, results are returned to users, and the access
satellite is reselected according to satellite trajectories, user
locations, and coverage conditions.

The model consists of M ground users and N satellites, one
of which is the access satellite. The sets of users and satellites
are denoted by M = {1, 2, . . . ,M} and N = {1, 2, . . . , N},
respectively. The m-th user and the n-th satellite are denoted
by Um and Sn, with S1 being the access satellite. There are
ISLs between S2 ∼ SN and S1. Each user has an indivisible
computational task, denoted as Tm, where m ∈ M. The task
Tm is represented by the 3-tuple Tm = {Qm,Bm,Tmax

m },
where Qm is the input data size (bits), Bm is the task

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3569553

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on June 28,2025 at 01:29:25 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

Fig. 1: LEO satellite-assisted OEC system.

processing density (cycles/bit), and Tmax
m is the maximum

tolerated delay (s). The matching strategy Φ determines where
each user performs its task: Φmn = 1 if Tm is processed
on Sn, otherwise, Φmn = 0. Similarly, Φm0 = 1 if Tm
is processed locally, otherwise, Φmn = 0. we define the
vector f = {f1, . . . , fm, . . . , fM} as users’ computing re-
source demands and P = {P1, . . . , Pn, . . . , PN} as satellites’
computing resource unit prices, where fm (m ∈M) represents
the amount of computing resources required by Um and Pn

(n ∈ N) represents unit price of computing resources for
Sn. If Um chooses to compute locally, i.e., Φm0 = 1, the
locally requested computing resources are denoted by f0

m. If
Um chooses to offload its task to Sn, i.e., Φmn = 1, the
computing resources requested from Sn are denoted by fn

m.
Therefore, the computing resources required by Um is

fm =

{
f0
m, if Φm0 = 1,

fn
m, if Φmn = 1.

(1)

B. Communication Model
In this system, users can process tasks locally or offload

them to the constellation via the access satellite. The com-
munication links include ground-to-satellite, inter-satellite, and
satellite-to-ground.

1) Ground-to-Satellites Communication: In this communi-
cation process, users transmit their tasks to S1 via wireless
backhaul links over the Ka-band. The data transmission rate
Rgnd

m from Um to S1 can be given by [32]

Rgnd
m = WKalog2(1 +

P gnd
m Hgnd

m

N0
), (2)

where WKa is the bandwidth, P gnd
m is the transmission power,

Hgnd
m is the channel gain, and N0 denotes the background

noise power. Therefore, the transmission delay tgndm required
by Um to transmit its task to S1 is

tgndm =
Qm

Rgnd
m

. (3)

The propagation delay tprop in the communication process
between users and satellites is

tprop =
D

C
, (4)

where D represents the altitude of the satellites from the
Earth’s surface, C is the speed of light.

2) Inter-Satellites Communication: Due to the access satel-
lite may choose to compute tasks itself or transmit tasks to
other satellites, it is necessary to consider the communication
process between the access satellite and other satellites. The
data transmission rate RISL between satellites is

RISL = WISLlog2(1 +RSN), (5)

where WISL is the channel bandwidth between satellites, RSN

is the signal-to-noise ratio for laser communications, which is

RSN =
γ2(P r)2

σ2
, (6)

where γ is detector response rate, P r is the received power,
and σ2 is the receiver noise. Therefore, the transmission delay
tISLm for S1 to transmit the task Tm to other satellites is

tISLm =
Qm

RISL
. (7)

3) Satellites-to-Ground Communication: Similar to [21],
the communication delay for satellites to transmit processed
results back to the ground is neglected due to the small data
size.

Thus, when Um decides to delegate its task to the satellite
constellation, if the access satellite provides computing ser-
vices, the required transmission delay ttransm1 is given by

ttransm1 = tgndm =
Qm

Rgnd
m

. (8)

Otherwise, i.e., other satellites provide computing services, the
required transmission delay ttransmn is

ttransmn = tgndm + tISLm

=
Qm

Rgnd
m

+
Qm

RISL
, n ̸= 1.

(9)

C. Computing Model

1) Local Computing: If Um chooses local computation, the
requested computing resources are f0

m according to equation
(1). Therefore, the local computation delay for Um is:

tcomp
m0 =

QmBm

f0
m

. (10)

2) Satellite Computing: If Um offloads its task to Sn,
the requested computing resources from Sn are fn

m. The
computation delay for Sn to execute Tm is

tcomp
mn =

QmBm

fn
m

. (11)

Thus, if Um computes locally, i.e., Φm0 = 1, the total time
it takes is

tm0 = tcomp
m0 =

QmBm

f0
m

. (12)

If Um offloads its task to the access satellite, i.e., Φm1 = 1,
the total time it takes is

tm1 = ttransm1 + 2tprop + tcomp
m1

=
Qm

Rgnd
m

+
2D

C
+

QmBm

f1
m

.
(13)

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3569553

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on June 28,2025 at 01:29:25 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

Otherwise, i.e., Φmn = 1, n ̸= 0, 1, the total time it takes is

tmn = ttransmn + 2tprop + tcomp
mn

=
Qm

Rgnd
m

+
Qm

RISL
+

2D

C
+

QmBm

fn
m

, n ̸= 0, 1.
(14)

The total time for Um to complete its computational task is

ttotalm = Φm0tm0 +Φm1tm1 +

N∑
n=2

Φmntmn

= Φm0 ·
QmBm

f0
m

+Φm1(
Qm

Rgnd
m

+
2D

C
+

QmBm

f1
m

)

+

N∑
n=2

Φmn(
Qm

Rgnd
m

+
Qm

RISL
+

2D

C
+

QmBm

fn
m

).

(15)

D. Energy Consumption Model

1) User Energy Consumption: If Um computes locally, the
computational energy it consumes is [33]

Ecomp user
m = κuser

m (f0
m)2QmBm, (16)

where κuser
m > 0 is the effective capacitance coefficient, which

is associated with the CPU of Um’ server. If Um offloads its
task, the transmission energy it needs to consume is

Etrans user
m = P gnd

m tgndm =
P gnd
m Qm

Rgnd
m

. (17)

2) Satellite Energy Consumption: If access satellite trans-
mits Tm to other satellites, the transmission energy consumed
is

Etrans sat
n = PISLt

ISL
m =

PISLQm

RISL
, (18)

where PISL is the transmission power of the access satellite.
The computational energy consumption of Sn is [33]

Ecomp sat
n = κsat

n (fn
m)2QmBm, (19)

where κsat
n > 0 is the effective capacitance coefficient, it is

related to the CPU of Sn’ edge server.

E. Profit Model

1) Profit of Users: If Um performs local computation, i.e.,
Φm0 = 1, it consumes computational energy and its profit is

Uuser
m0 = λQm − η1E

comp user
m

= λQm − η1κ
user
m (f0

m)2QmBm,
(20)

where λQm represents the reward and λ denotes the reward
coefficient. η1 > 0 is the conversion factor of the com-
putational energy for users. If Um offloads its task to Sn,
i.e., Φmn = 1, it consumes transmission energy and obtains
computing resources from Sn. Hence, its profit is

Uuser
mn = λQm − Pnf

n
m − ξ1E

trans user
m

= λQm − Pnf
n
m − ξ1

P gnd
m Qm

Rgnd
m

,
(21)

where Pn is the unit price for computing resources of Sn, and
ξ1 > 0 is the conversion factor of the transmission energy for
users. Therefore, the profit of Um is given by

Uuser
m = Φm0U

user
m0 +

N∑
n=1

ΦmnU
user
mn

= Φm0[λQm − η1κ
user
m (f0

m)2QmBm]

+

N∑
n=1

Φmn(λQm − Pnf
n
m − ξ1

P gnd
m Qm

Rgnd
m

).

(22)

The total profit for all ground users is

Uuser(P,Φ, f) =

M∑
m=1

Uuser
m . (23)

2) Profit of Satellites: If S1 executes task Tm locally, it
needs to consume computational energy, the profit that S1 can
earn from completing Tm is

U satellite
m1 = P1f

1
m − η2E

comp sat
1

= P1f
1
m − η2κ

sat
1 (f1

m)2QmBm,
(24)

where η2 > 0 is the conversion factor of the computational
energy for satellites. Hence, the profit of S1 is

U satellite
1 =

M∑
m=1

Φm1U
satellite
m1

=

M∑
m=1

Φm1[P1f
1
m − η2κ

sat
1 (f1

m)2QmBm].

(25)

If Sn(n ̸= 1) completes the task Tm, it needs to consume
transmission and computational energy for revenue. Therefore,
the profit that Sn can earn from completing Tm is

U satellite
mn = Pnf

n
m − η2E

comp sat
n − ξ2E

trans sat
n

= Pnf
n
m − η2κ

sat
n (fn

m)2QmBm

− ξ2
PISLQm

RISL
, n ̸= 1,

(26)

where ξ2 > 0 is the conversion factor of the transmission
energy for satellites. Thus, the profit of Sn is given by

U satellite
n =

M∑
m=1

ΦmnU
satellite
mn

=

M∑
m=1

Φmn[Pnf
n
m − η2κ

sat
n (fn

m)2QmBm

− ξ2
PISLQm

RISL
], n ̸= 1.

(27)

The total profit for all satellites is

U satellite(P,Φ, f) =

N∑
n=1

U satellite
n . (28)

IV. OFFLOADING PROCESS AND PROBLEM FORMULATION

In this section, the specific process of computation offload-
ing is described, and the BOP studied in this paper is proposed.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3569553

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on June 28,2025 at 01:29:25 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

A. Offloading Process

The computation offloading process illustrated in Fig. 1
consists of three stages: information collection, algorithm
execution and task offloading.

• Collecting Information. Users transmit task details
(e.g., computation volume, maximum tolerance delay) to
S1, and other satellites share their computing capacity
with S1 (“Information Transmission” in Fig. 1).

• Executing Algorithm. S1 processes the received in-
formation using the proposed algorithm (PSO-MG in Sec-
tion V) to determine offloading modes, resource demands,
and pricing. The decisions are then sent to users and
satellites (“Information Transmission” in Fig. 1).

• Offloading Computation. Based on the received de-
cisions, users either compute locally or offload tasks,
while satellites process and return results (“Task offload-
ing and Result Feedback” in Fig. 1).

B. Problem Formulation

As shown in Fig. 2, the interaction process between users
and satellites is as follows:

1) Satellites set initial computing resource unit price P.
2) Given P, the users determine the optimal decision Φ∗

and f∗ to maximize their total profit.
3) Given Φ∗ and f∗, the satellites update P to maximize

their total profit.
4) Return to 2) until the convergence condition is reached.
Satellites act as leaders in this interaction, while users

serve as followers who make decisions in response to the
satellites’ strategies. To dynamically adjust satellite resource
pricing, this paper formulates a bilevel optimization problem,
where maximizing users’ total profit serves as a constraint to
maximize satellite profit. The lower level determines users’
offloading decisions Φ and resource demands f in response to
pricing, whereas the upper level optimizes the pricing strategy
vector P for satellites. The BOP is

P0 : max
P,Φ,f

U satellite

s.t. C1 : Pmin
n ≤ Pn ≤ Pmax

n , ∀n ∈ N
{Φ, f} = argmax

Φ,f
Uuser

C2 : Φmn ∈ {0, 1}, ∀m ∈M,∀n ∈ {0} ∪ N

C3 :

N∑
n=0

Φmn ≤ 1, ∀m ∈M

C4 : Φm0fm ≤ fmax user
m , ∀m ∈M

C5 :

M∑
m=1

Φmnfm ≤ fmax sat
n , ∀n ∈ N

C6 : ttotalm ≤ Tmax
m , ∀m ∈M

C7 : fm ≥ 0, ∀m ∈M
the argmax term in the lower level problem represents the
users’ best response strategy, where users optimize the of-
floading decision Φ and resource demand f to maximize
their utility. Where C1 defines the valid range for resource
pricing; C2 ensures each user completes its task either locally

Fig. 2: Interaction between satellites and users.

or via offloading; C3 enforces task indivisibility and single-
server processing. fmax user

m denotes the maximum computing
resource for Um, C4 ensures local computation demand does
not exceed the threshold. fmax sat

n denotes the maximum
computing resource for Sn, C5 limits the total computing
resources that Sn can allocate to users. C6 ensures each user’s
task completion time does not exceed the maximum allowed
delay; and C7 guarantees the feasibility of users’ computing
resource demands.

V. PROPOSED APPROACH

Since P0 is a nested bilevel optimization problem, we design
a nested bilevel optimization algorithm (PSO-MG), as shown
in Fig. 3. The algorithm consists of three main components:
the upper level pricing optimization, the lower level offloading
decision, and the preprocessing module. To reduce compu-
tational complexity, the preprocessing module (Alg. 1) first
generates a candidate server set for each user. In each iteration,
the upper level applies a PSO-based optimization to explore
satellite pricing strategies P. For each candidate solution in
PSO, the lower level invokes a multi-round matching game
(Alg. 2) to determine the corresponding optimal offloading
decisions Φ. These decisions are then fed back to the upper
level to evaluate and update the pricing vector P.

A. Problem Transformation

If Um computes locally, C6 should be satisfied, i.e., tm0 ≤
Tmax

m . According to (12), f0
m at least satisfies

f0
m ≥

QmBm

Tmax
m

. (29)

Based on (20), the smaller of f0
m, the higher of Um’ profit.

The optimal local computing resource demand is

(f0
m)∗ =

QmBm

Tmax
m

. (30)

According to (13), only if ttransm1 + 2tprop ≤ Tmax
m holds, i.e.,

Qm

Rgnd
m

+ 2D
C ≤ Tmax

m , will Um offload its task to the access
satellite. Additionally, C6 should be satisfied, i.e., tm1 ≤ Tmax

m .
Therefore, f1

m at least satisfies

f1
m ≥

QmBm

Tmax
m − Qm

Rgnd
m
− 2D

C

. (31)

Given the fixed P1, Um can achieve higher profit by requesting
fewer computing resources, as shown in (21). The optimal
amount of resources requested from S1 is

(f1
m)∗ =

QmBm

Tmax
m − Qm

Rgnd
m
− 2D

C

. (32)

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3569553

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on June 28,2025 at 01:29:25 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

Fig. 3: Architecture of the algorithm PSO-MG.

According to (14), only if ttransmn + 2tprop ≤ Tmax
m holds,

i.e., Qm

Rgnd
m

+ Qm

RISL
+ 2D

C ≤ Tmax
m , will Um offload its task

to Sn(n ̸= 1). Similarly, the optimal amount of computing
resources requested from Sn(n ̸= 1) is

(fn
m)∗ =

QmBm

Tmax
m − Qm

Rgnd
m
− Qm

RISL
− 2D

C

. (33)

Based on (1), the optimal quantity of computing resources
required by Um is

f∗
m =



QmBm

Tmax
m

, if Φm0 = 1,
QmBm

Tmax
m − Qm

R
gnd
m

− 2D
C

, if Φm1 = 1,

QmBm

Tmax
m − Qm

R
gnd
m

− Qm
RISL

− 2D
C

, if Φmn = 1, n ̸= 0, 1,

0, otherwise.
(34)

It is obvious that C7 is satisfied if (34) is hold. Hence, as long
as Φ is known, the computing resources demanded by users
can be determined. Therefore P0 can be transformed as

P1 : max
P,Φ

U satellite

s.t. C1 : Pmin
n ≤ Pn ≤ Pmax

n , ∀n ∈ N
Φ = argmax

Φ
Uuser

C2 : Φmn ∈ {0, 1}, ∀m ∈M,∀n ∈ {0} ∪ N

C3 :

N∑
n=0

Φmn ≤ 1, ∀m ∈M

C8 : Φm0f
∗
m ≤ fmax user

m , ∀m ∈M

C9 :

M∑
m=1

Φmnf
∗
m ≤ fmax sat

n ,∀n ∈ N

The original MINLP problem at the lower level of P0 is trans-
formed into a discrete optimization problem in P1, making the
optimization issue more tractable.

B. Generation of Candidate Servers Set

Each user has N + 1 server options, which makes P1

computationally complex. However, not all servers satisfy
the task constraints. To reduce the computational burden, a
candidate server set is defined for each user.

Given limited local computing resources, C8 must be met
for Um to process tasks locally. Thus, the condition to enable
local computation based on (34) is

fmax user
m ≥ QmBm

Tmax
m

. (35)

The computing resources of satellites are limited, based on

Algorithm 1 Generation of Candidate Servers Set

1: for m = 1 to M do
2: τm = ∅;
3: for n = 0 to N do
4: if n = 0 and (35) is satisfied then
5: τm ← τm ∪ {0};
6: else if n = 1 and (36), (37) are satisfied then
7: τm ← τm ∪ {1};
8: else if n ̸= 0, 1 and (38), (39) are satisfied then
9: τm ← τm ∪ {n};

10: end if
11: end for
12: end for
13: return τ1, τ2, . . . , τM

C9 and (34), the necessary condition for Um to be allowed to
offload its task to S1 is

fmax sat
1 ≥ QmBm

Tmax
m − Qm

Rgnd
m
− 2D

C

. (36)

According to (13), another precondition for Um to offload its
task to S1 is given as

Tmax
m ≥ Qm

Rgnd
m

+
2D

C
. (37)

Similarly, the necessary condition for Um to be allowed to
offload its task to Sn(n ̸= 1) is

fmax sat
n ≥ QmBm

Tmax
m − Qm

Rgnd
m
− Qm

RISL
− 2D

C

, n ̸= 1. (38)

In addition, according to (14), another precondition is

Tmax
m ≥ Qm

Rgnd
m

+
Qm

RISL
+

2D

C
. (39)

In summary, for each user Um(m ∈ M), a candidate
server set τm is generated. As shown in Alg. 1, the process
sequentially checks each server: if inequality (35) holds, the
local server (with index 0) is added to τm; if inequalities (36)
and (37) are satisfied, the access satellite’s edge server (with
index 1) is included; and if inequalities (38) and (39) hold,
the edge server of Sn(n ̸= 1) (with index n) is added. This
approach reduces the search space of the lower level problem
and accelerates the solution process, with the optimal server
for Um selected from τm.

C. Lower Level Optimization

The lower level optimization problem of P1 is

P2 : max
Φ

Uuser

s.t. C2 : Φmn ∈ {0, 1}, ∀m ∈M,∀n ∈ {0} ∪ N

C3 :

N∑
n=0

Φmn ≤ 1, ∀m ∈M

C8 : Φm0f
∗
m ≤ fmax user

m , ∀m ∈M

C9 :

M∑
m=1

Φmnf
∗
m ≤ fmax sat

n ,∀n ∈ N

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3569553

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on June 28,2025 at 01:29:25 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

P2 is a discrete variable optimization problem that maximizes
the users’ total profit, solved using the matching game ap-
proach. Firstly, the fitness evaluation functions are defined,
then the concept of user priority is presented, and the specific
process of matching game is introduced through Alg. 2.

1) Fitness Evaluation Functions: To evaluate the offloading
decision Φ, two fitness evaluation functions are introduced. In
scenarios with a large number of users, limited computing
resources may prevent full task completion, making the task
completion rate a key priority. Therefore, the optimization
process first prioritizes maximizing task completion and then
aims to maximize the total profit for users. The two fitness
functions are

F1(Φ) =

M∑
m=1

N∑
n=0

Φmn. (40)

F2(P,Φ) = Uuser =

M∑
m=1

Uuser
m . (41)

When comparing two offloading decisions, the one with the
higher F1 is preferred. If both yield the same F1, the decision
with the higher F2 is selected.

2) User Priorities: Before determining Φ, user priorities
must be established, as random prioritization may hinder the
maximization of task completion rates. As shown in Fig. 4,
U1 has candidate servers 1 and 2 (τ1 = 1, 2), whereas U2 has
only server 1 (τ2 = 1). In Fig. 4 (a), if U1 is matched with
S1 first, U2 may fail to complete its task due to the limited
resources on S1. In contrast, Fig. 4(b) shows that if U2 is given
higher priority and matched with S1 first, U1 can still complete
its task by offloading to S2. Accordingly, user priorities are
assigned based on the size of their candidate server sets: the
fewer servers in τm, the higher the priority for Um.

3) Matching Game: The matching game is a type of game
theory that has relatively wide applications in the MEC field
[34]–[36]. In determining user offloading decisions, it is not
only important to select the optimal computation mode (local
processing or satellite computation), but also to choose the
best cooperation partner, i.e., the specific satellite for task
offloading. This requires considering the cooperation willing-
ness between users and satellites. Moreover, as the number of
users grows, the exponential increase in decision combinations
makes traditional heuristic algorithms inefficient due to high
computational costs and poor scalability. To address this, a
many-to-many matching game is formulated, in which each
user selects either a local server or a satellite edge server, while
satellites determine whether to accept user requests based on
their preferences and resource constraints. This matching game
is denoted as G(M, {0} ∪ N ,Γ,≻m,≻n), where M and
{0}∪N represent the participants in the matching game, Γ is
the matching function, ≻m and ≻n respectively represent the
preference relationship of users and satellites.

Definition 1 (Players in the Game): The matching game G is
a process in which two groups of game participants (M, {0}∪
N) order each other to achieve an optimal match, whereM =
{1, 2, . . . ,M} is the set of users and {0}∪N = {0, 1, 2, . . . ,N}
is the set of servers.

Fig. 4: A demonstration of the impact of whether or not to set
user priorities on the final match.

Definition 2 (Matching Function): The matching function
Γ :M→ {0} ∪ N is a mapping relation between these two
sets. Γ needs to satisfy the following conditions:

Γ(m) ∈ {0}, |Γ(m)| = 1,Φm0 = 1, (42a)

Γ(m) ∈ N , |Γ(m)| = 1,Φmn = 1, (42b)

(42a) and (42b) indicate that Um(m ∈ M) can only select
its local server or one of the edge servers in the LEO
constellation, not multiple servers.

Definition 3 (User’s Preference Relationship): In the match-
ing process, Um(m ∈ M) can select an optimal server
from τm that can maximize its profit. Therefore, the user’s
preference relationship is

n ≻m n′ ⇔ Uuser
mn > Uuser

mn′ ,

∀m ∈M,∀n, n′ ∈ τm,
(43)

where n, n′ are both candidate servers for Um.
Definition 4 (Satellite’s Preference Relationship): Since

each satellite may receive multiple offloading requests while
operating under limited computing resources, it must decide
which to accept. To maximize task completion, Sn selects
users in ascending order of their computing resource demands
until reaching the resource limit. In other words, satellites
prioritize users with lower resource requirements. Therefore,
the satellite’s preference relation is defined as follows

m ≻n m′ ⇔ (fn
m)∗ < (fn

m′)∗,

∀n ∈ N , n ∈ τm, τm′ ,
(44)

where n is a candidate server for m,m′.
The matching game process is outlined in Alg. 2. Users

are prioritized based on the ascending number of candidate
servers and matched sequentially, with users of the same pri-
ority matching simultaneously (lines 1-5). Each user evaluates
profits from its candidate servers according to the pricing
vector P, ranks them in descending order, and sends a request
to the top choice. Satellites prioritize users with lower resource
demands, accepting requests sequentially until reaching their
resource limit and rejecting the rest. Rejected users proceed to
the next server in their preference lists and repeat the process
until a match is found or all options are exhausted, forming
the initial matching (lines 6-11). Subsequently, swap matching
reallocates servers between matched pairs, generating a new
offloading matrix Φ′. If it yields a fitness improvement, the
current matrix Φ is updated. This process repeats until no
further optimization is possible, resulting in the final solution
(lines 12-20).

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3569553

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on June 28,2025 at 01:29:25 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

Algorithm 2 Multi-Round Matching Game Algorithm

Input: M, N , Q, B, Tmax, and P
Output: Φ

1: /*Initial solution construction*/
2: Initialize Φ = 0;
3: Generate user priorities: L = {l1, . . . , lM}; // lm is Um’s

priority, lmax
m is the maximum value in L.

4: for l = 1 to lmax
m do

5: {Um : lm = l,∀m ∈M} ← l.
6: Um constructs preference list from τm based on P.
7: Users either compute locally or send requests to the first

satellite in their list.
8: Sn accepts users based on the preference relationship

until its resource limit fmax sat
n is reached.

9: Rejected users send requests to the next server until
matched or all options are exhausted.

10: end for
11: Obtain the initial solution Φ.
12: /* Swap-matching */
13: repeat
14: Select matched pairs (i, j) and (i′, j′) from Φ, ensuring

j, j′ ∈ τi, τi′ .
15: Swap servers between pairs (i, j′) and (i′, j) to form

new matching matrix Φ′.
16: if F2(P,Φ′) > F2(P,Φ) then
17: Update Φ← Φ′

18: end if
19: until No further improvement: F2(P,Φ′) ≤ F2(P,Φ)
20: return Φ

According to standard matching theory [37], if the proposed
Alg. 2 yields a two-sided exchange-stable (2ES) matching, as
defined in Def. 5, this indicates that the matching game has
reached a Nash equilibrium.

Definition 5: Assuming the current match is Γ(m) = n,
then Γ is a 2ES matching if there does not exist a blocking
pair (m′, n′) that satisfies: 1) U user

mn′ > U user
mn , i.e., n′ ≻m n;

2) U user
m′n > U user

m′n′ , i.e., n ≻m′ n′; 3) (fn
m)∗ > (fn

m′)∗, i.e.,
m′ ≻n m; 4) (fn′

m′)∗ > (fn′

m)∗, i.e., m ≻n′ m′.
Next, we prove the absence of blocking pairs using a proof

by contradiction.
Theorem 1: The matching game in Alg. 2 can reach a Nash

equilibrium.
Proof 1: The current match is Γ(m) = n, and we assume

that there exists a blocking pair (m′, n′) that satisfies condi-
tions 1) to 4) of Def. 5, then it follows from the assumption that
n′ ≻m n and m ≻n′ m′. There are three possible situations
for the existence of this blocking pair as follows:

• Server n′ is not in the candidate set of user m. This
situation contradicts the condition n′ ≻m n.

• Server n′ is in the candidate set of user m while n′ is
unmatched. User m will send its matching request to
server n′ rather than n due to the higher preference. Thus,
user m should be matched with server n′, which is against
the assumption.

• Server n′ is in the candidate set of user m while n′ is
matched and its computing resources have been depleted.

This implies that there exists a user m′ that makes m′ ≻n′

m hold, which is violate the assumption.
Therefore, no blocking pairs exist, which confirms that the

matching game reaches a Nash equilibrium. Theorem 1 is
proved.

D. Upper Level Optimization

To evaluate the effectiveness of the pricing decision P, a
fitness function is defined. Since satellites aim to maximize
their total profit, the fitness function is expressed as

F3(P,Φ) = U satellite =

N∑
n=1

U satellite
n . (45)

Given the pricing strategy P, the lower level optimization of
P1 is solved using Alg. 2, while the upper level optimization
is handled by the PSO algorithm, which is known for its
efficiency and fast convergence [38]. The effectiveness of PSO
has been validated in [39], [40]. As P1 is a nested bilevel
optimization problem, a nested bilevel algorithm is developed
to dynamically adjust the pricing strategy.

In the PSO algorithm, each particle li has a position vector
xi, which represents a potential satellite pricing strategy, and
a velocity vector vi that guides the update direction. During
each iteration, the personal best position ybest

i is tracked for
each particle, while the global best gbest is selected based on
overall fitness. The velocity and position of li are updated as
follows

vi(t+ 1) = w(t)vi(t) + c1(t)z1[y
best
i (t)− xi(t)]

+ c2(t)z2[g
best(t)− xi(t)],

xi(t+ 1) = xi(t) + vi(t+ 1),

(46)

where t is the iteration number, w ∈ [0, 1] is the inertia weight,
c1 and c2 represent the cognitive and social learning factors,
respectively, and z1, z2 are independent random variables in
the range (0, 1). Based on the traditional PSO algorithm, a
linear decreasing weight (LDW) strategy and adaptive learning
factors are adopted to balance convergence speed and solution
accuracy. The inertia weight and learning factors are updated
by

w(t) = wmax − (wmax − wmin) · t

tmax
,

c1(t) = cmax
1 − (cmax

1 − cmin
1) · t

tmax
,

c2(t) = cmin
2 + (cmax

1 − cmin
1) · t

tmax
,

(47)

where wmax and wmin are the maximum and minimum inertia
weights, respectively, and cmax

1 , cmin
1 , cmax

2 , and cmin
2 are the

maximum and minimum values of the learning factors.
During the particle movement, Alg. 2 calculates the optimal

offloading decision matrix Φi corresponding to the current
position xi, leading to the satellite total profit F3(xi,Φi).
Subsequently, the personal best position ybest

i is updated as

ybest
i (t+ 1) ={
ybest
i (t), if F3(xi(t+ 1),Φi(t+ 1)) ≤ F3(xi(t),Φi(t)),

xi(t+ 1), otherwise.
(48)

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3569553

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on June 28,2025 at 01:29:25 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

Algorithm 3 PSO-MG
1: t = 0;
2: Randomly initialize particle swarm L = {l1, l2, . . . , lE}.
3: while t ≤ tmax do
4: Calculate inertia weight and learning factors by (47);
5: for each particle i = 1, 2, . . . , E do
6: Update position xi(t+ 1) and velocity vi(t+ 1) by

(46);
7: if xi(t+ 1) exceeds boundary then
8: xi(t+ 1) = xbound

i (t+ 1)
9: end if

10: Perform Alg. 2 to get offloading decision matrix
Φi(t+ 1);

11: Calculate satellite total profit F3(xi(t+1),Φi(t+1))
by (45);

12: Update personal best position ybest
i (t+ 1) by (48);

13: end for
14: Update global best position gbest(t+ 1) by (49);
15: t = t+ 1
16: end while
17: Set final global best position as P.
18: return P

The global best position gbest is updated as

gbest(t+1) = argmax
ybest
i

F3(y
best
i (t+1),Φybest

i
(t+1)). (49)

Since satellite pricing must satisfy the C1 constraint, boundary
handling is required for particle positions. If a particle’s
updated position exceeds the feasible range, it is adjusted to
the nearest boundary, i.e., xi(t+ 1) = xbound

i (t+ 1).
The PSO-MG algorithm is described in Alg. 3. Initially, the

positions and velocities of the particle swarm are randomly
initialized within the feasible range. In each iteration, the
inertia weight and learning factors are dynamically adjusted
using the LDW strategy to update particle velocities and
positions, while boundary constraints ensure feasibility. Then,
Alg. 2 is used to compute the optimal user offloading decision
for each particle, and satellite profit is evaluated using equation
(45). Personal and global best positions are updated based on
profit values. After all iterations, the final global best position
yields the optimal pricing strategy.

E. Complexity Analysis

The complexity of Alg. 2 consists of three main phases:
initial solution construction, matching request submission,
and swap-matching. In the first phase, each user sorts its
candidate server list, leading to a worst-case complexity of
O(M(N + 1) log(N + 1)). In the second phase, each user
submits requests to servers, which sort and process them,
resulting in a complexity of O(NM log(M)). The swap-
matching phase iteratively checks and swaps matched pairs,
requiring O(KM2), where K is the maximum number of
swap iterations. Since K is a constant, the overall complex-
ity of Alg. 2 is O(MN log(N) + NM log(M) + M2). In
Alg. 3, each particle in the swarm executes Alg. 2 once
per iteration. Given that the PSO algorithm runs for tmax

TABLE I: SYSTEM PARAMETERS SETTINGS

Parameter Value Parameter Value

N 6 Bm [1000, 1100] cycle/bit
Qm [1, 3] Mbit Tmax

m 1 s
fmax user
m 1.5 GHz fmax sat

n [10, 50] GHz
Rgnd

m 200 Mbps RISL 10 Gbps
P gnd
m 4 J/s PISL 0.08 J/s

κuser
m 1e-27 κsat

n 1e-28
η1 1 per J η2 0.1 per J
ξ1 1 per J ξ2 0.1 per J

tprop 0.015 s λ 5e-5
Pmin
n 1 per Gcycles Pmax

n 50 per Gcycles

iterations with E particles, the total complexity of Alg. 3 is
tmaxEO(MN log(N) +NM log(M) +M2).

VI. NUMERICAL RESULTS

A. Scenario Settings

1) Parameter Settings: In the simulation, ground users are
uniformly distributed within a 1000m radius circular region,
outside the base station coverage area. The access satellite
S1 is connected to five satellites S2 ∼ S6 via ISLs. The
main system parameters are derived from [29] and [41], and
summarized in Table I. Specifically, each user’s task size is
uniformly distributed between [1M, 3M] bits, and the task
processing density is uniformly distributed between [1000,
1100] cycles/bit. Each satellite’s maximum computing re-
source ranges uniformly from [10G, 50G] Hz. All simulations
were conducted using MATLAB.

2) Competitors: To evaluate the proposed PSO-MG algo-
rithm, we compare it with six algorithms, including the method
proposed in [41], three nested optimization algorithms, and
two benchmark algorithms.

• DE-VNS: It is a nested bilevel optimization algorithm,
where differential evolution (DE) is employed in the
upper level and variable neighborhood search (VNS) is
applied in the lower level. Moreover, a greedy method is
developed to construct a good initial solution for VNS.

• GA-MG: This algorithm employs a genetic algorithm
(GA) in the upper level to determine pricing strategies
for satellites’ computing resources, and utilizes Alg. 2 in
the lower level to make offloading decisions for users.

• Simplex-MG: A nested optimization algorithm that em-
ploys the Nelder-Mead simplex method in the upper level
and utilizes Alg. 2 in the lower level.

• PSO-ACS: It is composed of two heuristic algorithms
which uses PSO algorithm at the upper level and ant
colony system (ACS) algorithm at the lower level.

• Random: Users randomly choose local computation or
send offloading requests to the access satellite. The access
satellite randomly sets prices and accepts requests until
its maximum resource threshold is reached. Users rejected
by the access satellite can opt for local computation again
if their candidate server sets include local servers.

• ISL-assisted Random: Each user selects a server from its
candidate server set and sends an offloading request. Each

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3569553

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on June 28,2025 at 01:29:25 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

satellite accepts requests at random until its maximum
computing resource threshold is reached, rejecting the
remaining users. Rejected users send requests randomly
to the next server in their candidate sets until a successful
match is made or all servers have been attempted.

To evaluate the algorithms’ performance, three key metrics
are considered: satellite total profit, user task completion rate,
and algorithm runtime.

B. Performance Evaluation
Three sets of comparative experiments are conducted to

evaluate the convergence of the algorithms and to examine
the impact of varying user and satellite numbers on key
performance metrics.

1) Convergence of Algorithms: The convergence perfor-
mance of the five algorithms is illustrated in Fig. 5. All
algorithms converge to stable values. Specifically, GA-MG
achieves convergence after 18 iterations, while DE-VNS, PSO-
MG, PSO-ACS, and Simplex-MG converge after 24, 32, 61,
and 75 iterations, respectively. Upon convergence, PSO-MG
outperforms the other four algorithms, with performance im-
provements of 5.5%, 16.4%, 21.7%, and 55.9%, respectively.

2) Impact of Number of Users: As depicted in Fig. 6, we
compare the total satellite profits achieved by seven algorithms
under a fixed number of satellites (N = 6). Each algorithm
is executed 30 times per instance, and the average results
are reported. The satellite profits obtained by all algorithms
initially increase and then plateau as M increases. This is
because, with N fixed, a growing number of users provides
more opportunities for satellites to offer computing services.
However, once the maximum resource threshold is reached
(M ≥ 110), profits no longer improve. The proposed PSO-
MG algorithm yields the highest total profit, benefiting from
Alg. 2, which constructs preference strategies based on fitness
functions. In contrast, the heuristic ACS algorithm starts with a
random solution and struggles to explore the expanded search
space as M increases. In bilevel optimization, ACS’s lower
level solution may deviate significantly from the optimal,
affecting upper level performance accuracy.

The user task completion rate is defined as the ratio of users
who successfully complete their tasks to the total number
of users. Fig. 7 illustrates how this rate varies with the
number of users. Most algorithm curves remain stable at
first but drop sharply as the user count increases, with the
exception of the Random algorithm. The proposed PSO-MG
algorithm consistently achieves the highest completion rate.
When satellite resource thresholds are reached (M ≥ 110),
the completion rate of the ISL-assisted Random algorithm
falls below that of the proposed algorithm, indicating that user
prioritization based on sorting strategies effectively enhances
task completion.

The average running times of the five nested algorithms
for each instance are shown in Fig. 8. All algorithms ex-
hibit increasing runtimes as the number of users M grows.
Among them, Simplex-MG achieves the shortest execution
time because each iteration involves lightweight computations
with minimal complexity. The DE-VNS, GA-MG, and PSO-
MG algorithms show comparable runtimes, whereas PSO-ACS

0 20 40 60 80 100 120 140 160 180 200

Number of iterations

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

T
ot

al
 p

ro
fit

 o
f s

at
el

lit
es

PSO-MG
DE-VNS
GA-MG
Simplex-MG
PSO-ACS

Fig. 5: Iteration comparison of satellites’ profit for M = 30.

exhibits exponential growth. For instance, when M = 100,
the execution times of Simplex-MG, DE-VNS, GA-MG, and
PSO-MG are 13, 31, 44, and 56 minutes, respectively, while
PSO-ACS requires up to 14 hours.

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

Number of users

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

T
ot

al
 p

ro
fit

 o
f s

at
el

lit
es

PSO-MG
DE-VNS
GA-MG
Simplex-MG
PSO-ACS
ISL-assisted Random
Random

Fig. 6: Comparison of satellites’ profit with different numbers
of users.

3) Impact of Number of Satellites: In Fig. 9, we examine
the impact of the number of satellites on total profit under
scenarios where user task data volumes are relatively large
and satellite computing resource thresholds are low, assuming
a fixed number of users (M = 50). Our algorithm outperforms
the others in six instances. All algorithm curves initially
increase and then plateau, except for the Random algorithm.
When the number of satellites is small (N < 9), increasing N
improves task completion and thus enhances satellite profits.
Once all user tasks are completed, the total profit stabilizes.
Fig. 10 further shows that the user task completion rate
increases with N , with our algorithm consistently achieving
the highest completion rate, ultimately reaching 1.

VII. CONCLUSION

This paper proposes a bilevel optimization framework to
determine the pricing of satellite computing resources while
ensuring fair resource allocation to meet user task require-
ments. The upper level optimizes satellite profit by adjusting
resource prices, while the lower level manages user task
offloading and resource demands based on these prices. To
address this NP-hard problem, we transform it by leverag-
ing the relationship between offloading modes and resource
demands, pruning servers to narrow the search space, and

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3569553

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on June 28,2025 at 01:29:25 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

Number of users

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
as

k
co

m
pl

et
io

n
ra

te
 o

f u
se

rs
PSO-MG
DE-VNS
GA-MG
Simplex-MG
PSO-ACS
ISL-assisted Random
Random

Fig. 7: Comparison of users’ task completion rate with differ-
ent numbers of users.

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

Number of users

0

0.5

1

1.5

2

2.5

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e(
s)

105

PSO-MG
DE-VNS
GA-MG
Simplex-MG
PSO-ACS

10 20 30 40
0

500

1000

1500

2000

2500

Fig. 8: Comparison of average execution time with different
numbers of users.

5 6 7 8 9 10

Number of satellites

0

1000

2000

3000

4000

5000

6000

7000

8000

T
ot

al
 p

ro
fit

 o
f s

at
el

lit
es

PSO-MG
DE-VNS
GA-MG
Simplex-MG
PSO-ACS
ISL-assisted Random
Random

Fig. 9: Comparison of satellites’ profit with different numbers
of satellites.

devising a nested bilevel optimization algorithm (PSO-MG).
Experimental results demonstrate that PSO-MG outperforms
both nested heuristic and baseline algorithms in terms of
satellite profit and task completion rate. However, the current
model does not fully consider complex orbital dynamics, such
as satellite movement and dynamic connectivity. Future work
will focus on developing a real-time adaptive pricing algorithm
to handle satellite mobility and resource demand variations.

REFERENCES

[1] L. P. Qian, Y. Wu, N. Yu, D. Wang, F. Jiang, and W. Jia, “Energy-
efficient multi-access mobile edge computing with secrecy provision-

5 6 7 8 9 10

Number of satellites

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
as

k
co

m
pl

et
io

n
ra

te
 o

f u
se

rs

PSO-MG
DE-VNS
GA-MG
Simplex-MG
PSO-ACS
ISL-assisted Random
Random

Fig. 10: Comparison of users’ task completion rate with
different numbers of satellites.

ing,” IEEE Transactions on Mobile Computing, vol. 22, no. 1, pp. 237–
252, 2023.

[2] M. Cao, Q. Wang, and Q. Wang, “Federated learning in smart home:
A dynamic contract-based incentive approach with task preferences,”
Computer Networks, 2024.

[3] T. de Cola and I. Bisio, “Qos optimisation of embb services in converged
5g-satellite networks,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 10, pp. 12 098–12 110, 2020.

[4] Z. Lin, M. Lin, T. de Cola, J.-B. Wang, W.-P. Zhu, and J. Cheng,
“Supporting iot with rate-splitting multiple access in satellite and aerial-
integrated networks,” IEEE Internet of Things Journal, vol. 8, no. 14,
pp. 11 123–11 134, 2021.

[5] Z. Zhang, Y. Li, C. Huang, Q. Guo, L. Liu, C. Yuen, and Y. L. Guan,
“User activity detection and channel estimation for grant-free random
access in leo satellite-enabled internet of things,” IEEE Internet of Things
Journal, vol. 7, no. 9, pp. 8811–8825, 2020.

[6] B. Denby and B. Lucia, “Orbital edge computing: Machine inference in
space,” IEEE Computer Architecture Letters, vol. 18, no. 1, pp. 59–62,
2019.

[7] H.-C. Chao, D. E. Comer, and O. Kao, “Space and terrestrial integrated
networks: Emerging research advances, prospects, and challenges,” IEEE
Network, vol. 33, no. 1, pp. 6–7, 2019.

[8] M. Giordani and M. Zorzi, “Non-terrestrial networks in the 6g era:
Challenges and opportunities,” IEEE Network, vol. 35, no. 2, pp. 244–
251, 2021.

[9] J. Cui, S. X. Ng, D. Liu, J. Zhang, A. Nallanathan, and L. Hanzo,
“Multiobjective optimization for integrated ground-air-space networks:
Current research and future challenges,” IEEE Vehicular Technology
Magazine, vol. 16, no. 3, pp. 88–98, 2021.

[10] J. Liu, Y. Shi, Z. M. Fadlullah, and N. Kato, “Space-air-ground integrated
network: A survey,” IEEE Communications Surveys & Tutorials, vol. 20,
no. 4, pp. 2714–2741, 2018.

[11] S. Wang, Q. Li, M. Xu, X. Ma, A. Zhou, and Q. Sun, “Tiansuan
constellation: An open research platform,” in 2021 IEEE International
Conference on Edge Computing (EDGE), 2021, pp. 94–101.

[12] Y. Su, Y. Liu, Y. Zhou, J. Yuan, H. Cao, and J. Shi, “Broadband leo
satellite communications: Architectures and key technologies,” IEEE
Wireless Communications, vol. 26, no. 2, pp. 55–61, 2019.

[13] R. Xie, Q. Tang, Q. Wang, X. Liu, F. R. Yu, and T. Huang, “Satellite-
terrestrial integrated edge computing networks: Architecture, challenges,
and open issues,” IEEE Network, vol. 34, no. 3, pp. 224–231, 2020.

[14] F. Tang, H. Hofner, N. Kato, K. Kaneko, Y. Yamashita, and M. Hangai,
“A deep reinforcement learning-based dynamic traffic offloading in
space-air-ground integrated networks (sagin),” IEEE Journal on Selected
Areas in Communications, vol. 40, no. 1, pp. 276–289, 2022.

[15] C. Ding, J.-B. Wang, H. Zhang, M. Lin, and G. Y. Li, “Joint optimization
of transmission and computation resources for satellite and high altitude
platform assisted edge computing,” IEEE Transactions on Wireless
Communications, vol. 21, no. 2, pp. 1362–1377, 2022.

[16] C. E. Gonzalez, A. Bergel, and M. A. Diaz, “Nanosatellite constellation
control framework using evolutionary contact plan design,” in 2021
IEEE 8th International Conference on Space Mission Challenges for
Information Technology (SMC-IT), 2021, pp. 85–92.

[17] S. Kassing, D. Bhattacherjee, A. B. guas, J. E. Saethre, and A. Singla,
“Exploring the “internet from space” with hypatia,” in IMC ’20: ACM
Internet Measurement Conference, 2020.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3569553

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on June 28,2025 at 01:29:25 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

[18] Z. Zhai, Q. Wu, S. Yu, R. Li, F. Zhang, and X. Chen, “Fedleo: An
offloading-assisted decentralized federated learning framework for low
earth orbit satellite networks,” IEEE Transactions on Mobile Computing,
vol. 23, no. 5, pp. 5260–5279, 2024.

[19] G. Cui, P. Duan, L. Xu, and W. Wang, “Latency optimization for hybrid
geo–leo satellite-assisted iot networks,” IEEE Internet of Things Journal,
vol. 10, no. 7, pp. 6286–6297, 2023.

[20] X. Chen, Y. Zhou, L. Yang, and L. Lv, “User satisfaction oriented
resource allocation for fog computing: A mixed-task paradigm,” IEEE
Transactions on Communications, vol. 68, no. 10, pp. 6470–6482, 2020.

[21] X. Cao, B. Yang, Y. Shen, C. Yuen, Y. Zhang, Z. Han, H. V. Poor,
and L. Hanzo, “Edge-assisted multi-layer offloading optimization of leo
satellite-terrestrial integrated networks,” IEEE Journal on Selected Areas
in Communications, vol. 41, no. 2, pp. 381–398, 2023.

[22] C. Huang, G. Chen, P. Xiao, Y. Xiao, Z. Han, and J. A. Chambers, “Joint
offloading and resource allocation for hybrid cloud and edge computing
in sagins: A decision assisted hybrid action space deep reinforcement
learning approach,” IEEE Journal on Selected Areas in Communications,
pp. 1–1, 2024.

[23] S. Wang and Q. Li, “Satellite computing: Vision and challenges,” IEEE
Internet of Things Journal, vol. 10, no. 24, pp. 22 514–22 529, 2023.

[24] Q. Li, S. Wang, X. Ma, A. Zhou, and F. Yang, “Towards sustainable
satellite edge computing,” in 2021 IEEE International Conference on
Edge Computing (EDGE), 2021, pp. 1–8.

[25] NASA. (2023) Thermal control. Accessed: 2023-07-30. [Online]. Avail-
able: https://www.nasa.gov/smallsat-institute/sst-soa/thermal-control/

[26] R. Deng, B. Di, S. Chen, S. Sun, and L. Song, “Ultra-dense leo
satellite offloading for terrestrial networks: How much to pay the satellite
operator?” IEEE Transactions on Wireless Communications, vol. 19,
no. 10, pp. 6240–6254, 2020.

[27] F. Li, K.-Y. Lam, X. Liu, J. Wang, K. Zhao, and L. Wang, “Joint pricing
and power allocation for multibeam satellite systems with dynamic game
model,” IEEE Transactions on Vehicular Technology, vol. 67, no. 3, pp.
2398–2408, 2018.

[28] J. Zhou, Q. Yang, L. Zhao, H. Dai, and F. Xiao, “Mobility-aware
computation offloading in satellite edge computing networks,” IEEE
Transactions on Mobile Computing, pp. 1–15, 2024.

[29] Y. Zhang, C. Chen, L. Liu, D. Lan, H. Jiang, and S. Wan, “Aerial edge
computing on orbit: A task offloading and allocation scheme,” IEEE
Transactions on Network Science and Engineering, vol. 10, no. 1, pp.
275–285, 2023.

[30] N. Patrizi, G. Fragkos, K. Ortiz, M. Oishi, and E. E. Tsiropoulou, “A
uav-enabled dynamic multi-target tracking and sensing framework,” in
GLOBECOM 2020 - 2020 IEEE Global Communications Conference,
2020, pp. 1–6.

[31] X. Zhang, X. Qin, B. Qian, T. Ma, and H. Zhou, “Joint mode selection
and dynamic pricing in ultra dense leo integrated satellite-terrestrial net-
works,” in 2022 IEEE/CIC International Conference on Communications
in China (ICCC), 2022, pp. 1090–1094.

[32] X. Chen, “Decentralized computation offloading game for mobile cloud
computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 4, pp. 974–983, 2015.

[33] K. Wang, K. Yang, and C. S. Magurawalage, “Joint energy minimization
and resource allocation in c-ran with mobile cloud,” IEEE Transactions
on Cloud Computing, vol. 6, no. 3, pp. 760–770, 2018.

[34] T. Fang, D. Wu, J. Chen, and D. Liu, “Cooperative task offloading
and content delivery for heterogeneous demands: A matching game-
theoretic approach,” IEEE Transactions on Cognitive Communications
and Networking, vol. 8, no. 2, pp. 1092–1103, 2022.

[35] Y. Yang, Y. Hui, N. Cheng, R. Sun, M. Tian, and C. Li, “Vehicle
digital twins in space-air-ground integrated networks: A game-based
migration scheme,” in 2023 IEEE 98th Vehicular Technology Conference
(VTC2023-Fall), 2023, pp. 1–6.

[36] J. Xia, G. Cheng, D. Guo, and X. Zhou, “A qoe-aware service-
enhancement strategy for edge artificial intelligence applications,” IEEE
Internet of Things Journal, vol. 7, no. 10, pp. 9494–9506, 2020.

[37] E. Bodine-Baron, C. Lee, A. Chong, B. Hassibi, and A. Wierman, “Peer
effects and stability in matching markets,” arXiv e-prints, 2011.

[38] M. Xie, Y. Bai, M. Huang, Y. Deng, and Z. Hu, “Energy- and time-
aware data acquisition for mobile robots using mixed cognition particle
swarm optimization,” IEEE Internet of Things Journal, vol. 7, no. 8, pp.
7734–7750, 2020.

[39] M. Huang, V. C. M. Leung, A. Liu, and N. N. Xiong, “Tma-dpso:
Towards efficient multi-task allocation with time constraints for next
generation multiple access,” IEEE Journal on Selected Areas in Com-
munications, vol. 40, no. 5, pp. 1652–1666, 2022.

[40] H. D. Chantre and N. L. S. da Fonseca, “Multi-objective optimization for
edge device placement and reliable broadcasting in 5g nfv-based small
cell networks,” IEEE Journal on Selected Areas in Communications,
vol. 36, no. 10, pp. 2304–2317, 2018.

[41] P.-Q. Huang, Y. Wang, and K. Wang, “A divide-and-conquer bilevel
optimization algorithm for jointly pricing computing resources and
energy in wireless powered mec,” IEEE Transactions on Cybernetics,
vol. 52, no. 11, pp. 12 099–12 111, 2022.

Xinyu Wang is currently pursuing the M.S.
degree with the Laboratory of Big-data, School
of Mathematics, Hefei University of Technol-
ogy, Hefei. Her research interests include edge
computing and satellite-terrestrial integrated
networks.

Qi Wang received the Ph.D. degree in Com-
puter Science from Hefei University of Tech-
nology, Hefei, China, in 2010. She was a
visiting scholar at Temple University between
2014 and 2015. She is an associate professor
in the Department of Mathematics at Hefei
University of Technology. Her research in-
terests include edge computing, delay-tolerant
networks, and network coding.

Qingshan Wang received his Ph.D. degree in
Computer Science from the University of Sci-
ence and Technology of China (USTC), Hefei,
China, in 2007. He was a visiting scholar at
Cornell University between 2009 and 2010.
He is a professor in the Department of Math-
ematics at Hefei University of Technology.
His research interests include human action
recognition, delay-tolerant networks, ad hoc
network protocol design, and network coding.

Manxia Cao received the M.S. degree from
the School of Mathematics, Hefei University
of Technology, Hefei, China, in 2021. She is
currently pursuing the Ph.D. degree with the
Laboratory of Big-data, School of Mathemat-
ics, Hefei University of Technology, Hefei. Her
research interests include edge computing and
federated learning.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3569553

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on June 28,2025 at 01:29:25 UTC from IEEE Xplore. Restrictions apply.

https://www.nasa.gov/smallsat-institute/sst-soa/thermal-control/

	Introduction
	Related Work
	System Model
	Scenario Model
	Communication Model
	Ground-to-Satellites Communication
	Inter-Satellites Communication
	Satellites-to-Ground Communication

	Computing Model
	Local Computing
	Satellite Computing

	Energy Consumption Model
	User Energy Consumption
	Satellite Energy Consumption

	Profit Model
	Profit of Users
	Profit of Satellites

	Offloading Process And Problem Formulation
	Offloading Process
	Problem Formulation

	Proposed Approach
	Problem Transformation
	Generation of Candidate Servers Set
	Lower Level Optimization
	Fitness Evaluation Functions
	User Priorities
	Matching Game

	Upper Level Optimization
	Complexity Analysis

	Numerical Results
	Scenario Settings
	Parameter Settings
	Competitors

	Performance Evaluation
	Convergence of Algorithms
	Impact of Number of Users
	Impact of Number of Satellites

	CONCLUSION
	References
	Biographies
	Xinyu Wang
	Qi Wang
	Qingshan Wang
	Manxia Cao

